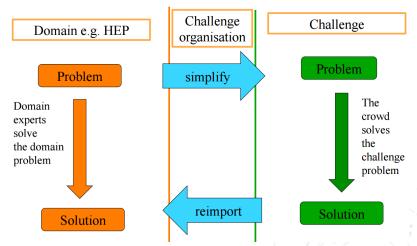
Physics Prize Flavours of Physics Challange

Marcin Chrząszcz mchrzasz@cern.ch

University of Zurich^{UZH}



Universität Zürich

Institute of Nuclear Physics, Polish Academy of Science

NIPS conference, Montreal December 11, 2015

From domain to challenge and back

 \Rightarrow Not all solutions can be reimported back to HEP \rightarrow Physics prize for the ones that can!

Physics Prize

⇒ HEP meets ML Award

An award will be given to the team that, as judged by the LHCb collaboration members on the organizing committee, creates a model that is the most useful for the LHCb experiment. The selection criteria include:

- The simplicity/straightforwardness/originality of the approach.
- The computing requirements (CPU and memory demands).
- The suitability for use in production.
- The robustness with respect to lack of training statistics.

The winning team will be awarded 2000~\$ and invited to meet the LHCb collaboration physicists at dedicated workshop held by University of Zurich on Feb. 18-20, 2016.

We thank Intel for supporting this prize.

Physics Prize

⇒ HEP meets ML Award

An award will be given to the team that, as judged by the LHCb collaboration members on the organizing committee, creates a model that is the most useful for the LHCb experiment. The selection criteria include:

- The simplicity/straightforwardness/originality of the approach.
- The computing requirements (CPU and memory demands).
- The suitability for use in production.
- The robustness with respect to lack of training statistics.

The winning team will be awarded 2000~\$ and invited to meet the LHCb collaboration physicists at dedicated workshop held by University of Zurich on Feb. 18-20, 2016.

We thank Intel for supporting this prize.

Upgrade:

Due to high level of submitted solutions we decided to increase award

Other members of the physics prize committee

P. Koppenburg

T. Blake

M. Bettler

F. Dettori

A. Ustyuzhanin

T. Likhomanenko

And the winners are:

Vincens Gaitan, R&D director in the Grupo AIA. Studied physics and got a PhD in Machine Learning in 1993 with the ALEPH.

Very good physics understanding of the problem and the tests!

- ⇒ Derived a number of very different approaches (some being hacks) that are well documented in this blog
- ⇒ Interesting ideas of doping the background training sample with simulated events from other channel, thus forcing the classifier to be less dependent on data-MC differences.

This technique might help in the every analysis where $\mathsf{DATA}/\mathsf{MC}$ differences are problematic.

And the winners are:

Alexander Rakhlin, self-employed, previously Uniastrum Bank.

Finished National Research University of Electronic Technology (MIET).

⇒ Experience in Machine Learning and Data Analysis applications to business, medicine and science, including but not limited to image recognition, EEG/MRI decoding, Diabetic Retinopathy Detection, **High Energy Physics**.

- ⇒ This solutions really makes us optimistic as it solves problem that we are usually facing in rare decays:
- Small statistics
- Imperfect MC
- Translating information from control to signal channel.

Advertisement

- \Rightarrow The physics winners are invited to the "Heavy Flavour Data mining" workshop at Zurich.
 - ⇒ You are ALL INVITED! Please come and help us discover NP.
- \Rightarrow Register: LINK.

