Search for the suppressed $\Lambda_c^+ o p\mu^+\mu^-$ decay and observation of the $\Lambda_c^+ o p\omega$ decay

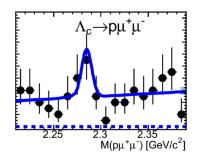
Marcin Chrzaszcz mchrzasz@cern.ch

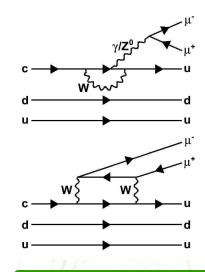
With M. Jezabek, T. Lesiak, B. Nowak, M. Witek (IFJ PAN)

Tuesday meeting, CERN September 26, 2017

Yellow pages

- ⇒ Reviewers: Tom Blake(chair), Harry Cliff, Simon Eydelman(EB)
- ⇒ Twiki:


https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/Lc2PMuMu


- ⇒ Review start: 01.04.2017
- ⇒ Three interactions with the review committee.
- ⇒ Unbinding: 18.07.2017
- ⇒ Minor changes to the analysis during the review.

We would like to take this occasion and than Tom, Harry and Simon for fruitful, constructive and smooth review!

Motivation

- \Rightarrow SM predictions:
- $\mathcal{O}(10^{-8})$
- \Rightarrow Long distance effects: $\mathcal{O}(10^{-6})$
- \Rightarrow Previous measurement done by Babar: ${\rm Br}(\Lambda_c^+ \to p \mu^+ \mu^-) < 4.4 \cdot 10^{-5}$ at 90% CL

Should be able to improve by a factor of 100!

Analysis strategy

- \Rightarrow Normalization to $\Lambda_c^+ \to p\phi(\mu\mu)$.
- ⇒ Typical steps rare decays:
- Loose stripping selection.
- BDT1 used for first preselection.
- BDT2 used to further suppress the background.
- PID used to fight the peaking background.
- ⇒ Search performed in several dimuon mass windows.
- \Rightarrow Selection optimized on CL_{s} .
- \Rightarrow Unblinding and calculate the UL of BR using $\mathrm{CL}_\mathrm{s}.$

Analysis strategy

- \Rightarrow Normalization to $\Lambda_c^+ \to p\phi(\mu\mu)$.
- ⇒ Typical steps rare decays:
- Loose stripping selection.
- BDT1 used for first preselection.
- BDT2 used to further suppress the background.
- PID used to fight the peaking background.
- ⇒ Search performed in several dimuon mass windows.
- \Rightarrow Selection optimized on $\mathrm{CL}_{\mathrm{s}}.$
- \Rightarrow Unblinding and calculate the UL of BR using $\mathrm{CL}_\mathrm{s}.$

Normalization channel

Use the $\Lambda_c^+ \to p\phi(\mu\mu)$.

- \Rightarrow Same final state, same selection, a lot of systematics cancel.
- \Longrightarrow The Branching fraction of $\Lambda_c^+ \to p \phi$ is know with 22~%.

Use the $\Lambda_c^+ \to pK\pi$.

- \Rightarrow Precisely known branching fraction (precision: 6.4~%).
- ⇒ A lot of additional systematics due to different final states, different selections

We choose the $\Lambda_c^+ \to p\phi(\mu\mu)$ option

- \implies In the most optimistic scenario where you assume the 22~% systematic to go town to 6.4~% the UL.
- \Rightarrow In this case the UL gets worse 7.8 %.

Normalization channel

Use the $\Lambda_c^+ \to p\phi(\mu\mu)$.

- ⇒ Same final state, same selection, a lot of systematics cancel.
- \Rightarrow The Branching fraction of $\Lambda_c^+ \to p\phi$ is know with 22~%.

Use the $\Lambda_c^+ \to pK\pi$.

- \Rightarrow Precisely known branching fraction (precision: 6.4 %).
- ⇒ A lot of additional systematics due to different final states, different selections

We choose the $\Lambda_c^+ \to p\phi(\mu\mu)$ option

- \implies In the most optimistic scenario where you assume the 22~% systematic to go town to 6.4~% the UL.
- \Rightarrow In this case the UL gets worse 7.8 %.

Data sets and Stripping

⇒ 2011+2012 (aka Run1) Stripping 20.

Condition	$\Lambda_c^+ o p \mu^+ \mu^-$
μ^{\pm} and p	
p_T	> 300 MeV/c
Track χ^2 /ndf	< 3
IP χ^2 /ndf	> 9
PID μ^{\pm}	PIDmu $>$ -5 and (PIDmu - PIDK) $>$ 0
PID _P	PID _P >10
Λ_c^+	
Δm	$< 150 MeV/c^2$
Vertex χ^2	< 15
IP χ^2	< 225
$c\tau$	$> 100 \mu \mathrm{m}$
Lifetime fit χ^2	< 225

Preselection

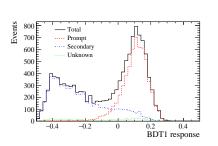
⇒ Additional cuts:

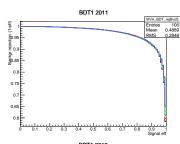
Common cuts
$m_{\mu\mu} < 1400 \; MeV/c^2$
proton $ProbNNp > 0.1$
$\mu^+, \mu^- \ ProbNNmu > 0.1$
$10 \; GeV/c < p_{proton} < 100 \; GeV/c$

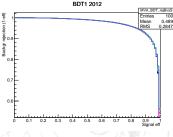
⇒ We define couple of dimuom mass regions:

$m(\mu\mu)$ region	$\left[MeV/c^2 ight]$
ϕ region	[985, 1055]
ω region	[759, 805]
non resonant	$[210, 747] \cup [817, 980] \cup [1060, 1400]$

Trigger

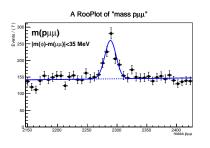

- ⇒ We require the following triggers (all are TOS):
- L0
 - L0MuonDecision
- HLT1
 - Hlt1TrackMuonDecision
 - Hlt1DiMuonLowMassDecision
 - Hlt1TrackAllL0Decision
- HLT2
 - Hlt2DiMuonDetachedDecision
 - Hlt2CharmSemilep3bodyD2KMuMuDecision
 - Hlt2CharmSemilepD2HMuMuDecision
- \Rightarrow The TIS increase the signal yield by <10~% and were asked to be removed at the WG review stage.

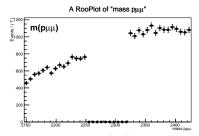

BDT1 training


⇒ The normalization channel is also a rather "rare decay":

$$\operatorname{Br}(\Lambda_c^+ \to p\phi) \cdot \operatorname{Br}(\phi \to \mu\mu) = 3.1 \cdot 10^{-7}$$

⇒ After the previous preselection a simple BDT is trained using variables that are well simulated in the MC. k-folding used $(k = 10) \Rightarrow$ The BDT1 (not surprisingly) likes the prompt Λ_c rather the secondary ones.





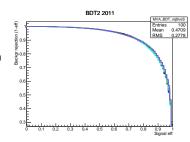
BDT1 selection

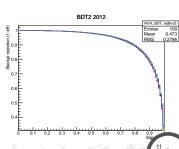
- ⇒ The selection based on BDT1 is not optimised.
- ⇒ A loose cut:

$$BDT1 > -0.1$$

⇒ The normalization channel peak is observed.

BDT2 selection

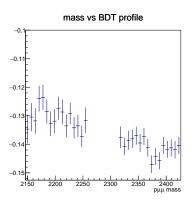

⇒ Variables used:


- flight distance the one between the production and decay points.
- χ^2 of flight distance,
- transformed decay time $T = \exp(-1000 \cdot \tau/\text{ns})$,
- IP impact parameter with respect to primary vertex,

•
$$\chi^2$$
 of IP of Λ_c^+

•
$$\log(\chi^2_{DTF})$$
,

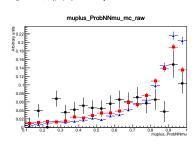
- ullet p_T transverse momentum of Λ_c^+ ,
- minimum of χ^2 of p, μ^+ , μ^- w.r.t. primary vertex,
- transverse momenta

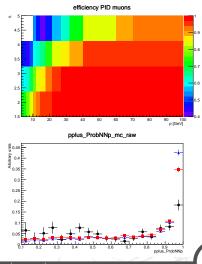


BDT2

⇒ After correcting the DATA/MC differences the BDT distribution shows a a good DATA/MC agreement.

⇒ No mass correlation observed.

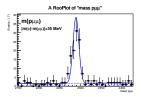


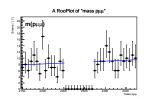


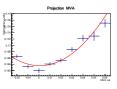
PID

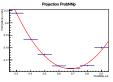
⇒ MC re sampling is choose to correct the PID distributions: For MC samples the ProbNNp and ProbNNmu are drawn from the PIDCalib distributions.

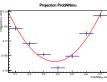
- \Rightarrow The PIDCalib doesn't cover to low p_T muons (10%).
- \Rightarrow Decided to use for them the $D_s \to \phi(\mu\mu)$ sample.

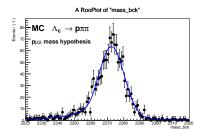




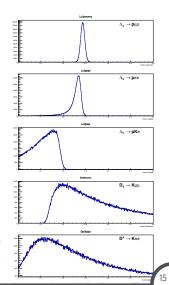

Selection optimization


- ⇒ The final selection of the analysis is optimized!
- $\Rightarrow \mathrm{CL_s}$ method used.
- ⇒ KDE used to sample toy experiments.


Variable	Condition
BDT	> 0.0
ProbNNp(p)	> 0.68
minimum $ProbNNmu(\mu^{\pm})$	> 0.38



Peaking backgrounds

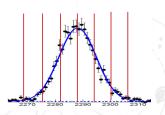

⇒ The tight PID cuts essentially kill the peaking bkg!

 \Rightarrow The only bkg left is the $\Lambda_c^+ \to p\pi\pi$.

⇒ Estimated contamination:

 $1.96 \pm 1.13 \Rightarrow$ assigned as systematic

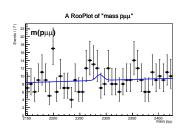
Normalization

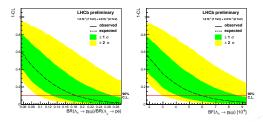

⇒ The gold equation:

$$\frac{\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-)}{\mathcal{B}(\Lambda_c^+ \to p \phi(\mu \mu))} = \frac{\epsilon_{\mathrm{norm}}^{\mathrm{TOT}}}{\epsilon_{\mathrm{sig}}^{\mathrm{TOT}}} \times \frac{N_{\mathrm{sig}}}{N_{\mathrm{norm}}},$$

⇒ We take advantage of the cancellation that:

$$\frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}}^{\text{TOT}} = \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}}^{\text{STRIP}} \times \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}}^{\text{COMM}} \times \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}}^{\text{SPEC}}, \quad \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}}^{\text{i}} \simeq 1$$

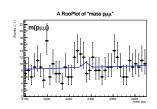

- ⇒ In addition we have added 6 mass bins to increase the sensitivity.
- ⇒ Signal is modelled by a double Gaussian.

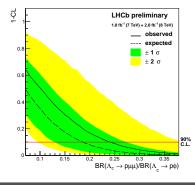

 $\binom{16}{20}$

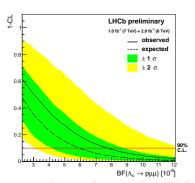
Expected background

⇒ Background modelled with a linear function.

bin	no events
bin1	8.56136 ± 0.540302
bin2	8.60318 ± 0.536917
bin3	8.64582 ± 0.536561
bin4	8.6887 ± 0.539208
bin5	8.7304 ± 0.544752
bin6	8.77226 ± 0.553162




 \Rightarrow Expected upper limits: $\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-) < 5.91 \times 10^{-8}$ at 90 % CL

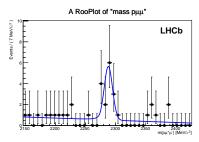

Observed Upper limits

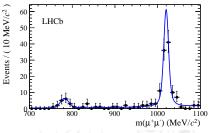
- ⇒ After the green light from RC we have unblinded we did not observed a significant access of events.
- ⇒ We have set an UL:

$$\mathcal{B}(\Lambda_c^+ \to p\mu^+\mu^-) < 7.68 \times 10^{-8} \text{ at } 90 \% \text{ CL}$$

10/20

By product :)


 \Rightarrow We also looked at the ω dimuon region.


We observed an access

Using Wilks theorem we have calculated the singificance to be $5.0~\sigma!$

⇒ This is the first observation of this decay!!!

$$\mathcal{B}(\Lambda_c^+ \to p\omega) = (7.6 \pm 2.6 \; (stat) \pm 0.9 \; (syst1) \pm 3.1 \; (syst2)) \times 10^{-4}$$

Conclusion

• Improved the UL for $\mathcal{B}(\Lambda_c^+ o p \mu^+ \mu^-)$ by two orders of magnitude!

Conclusion

• Improved the UL for $\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-)$ by two orders of magnitude!

- First time observed the decay $\Lambda_c^+ o p \omega!!$
- Paper is beeing prepared, aiming PRL
- We would like to ask the collaboration for approving this analysis.

Backup

