Magnet Stations for LHCb

Marcin Chrząszcz, Marc-Oliver Bettler, Igor Babuschkin, Maurizio Martinelli, Christ Parkes, Marco Gersabeck

MS meeting, September 26, 2016

LHCb

Where our tracks are?

⇒ The upstream tracks have rather poor momentum resolution: $\frac{\Delta p}{p} \sim 15\%$. ⇒ The particles die after short and sad (for physics) life in the magnet yoke. ⇒ If one put chambers in the magnet stations, one could record the particles before they

 \Rightarrow This will not increase the material budget of the rest of the detector.

death.

Physics interest

 \Rightarrow We have enormous amount of channels where we have slow particles:

- $D^* \rightarrow D\pi$.
- $\Lambda_c(2595, 2625) \rightarrow \Lambda_c \pi \pi$.
- All the B^{**} decays! ← huge community interests!!!
- As well other states: $\Sigma_b \rightarrow \Lambda_b \pi$.
- Little is known about the excited B_s^0 states as well.
- $\tau \to 3\mu$.

'/9

τ production

• τ 's in LHCb come from five main sources:

Mode	$7 { m TeV}$	8 TeV
Prompt $D_s ightarrow au$	$71.1 \pm 3.0\%$	$72.4 \pm 2.7\%$
Prompt $D^+ \rightarrow \tau$	$4.1 \pm 0.8\%$	$4.2\pm0.7\%$
Non-prompt $D_s ightarrow au$	$9.0\pm2.0\%$	$8.5\pm1.7\%$
Non-prompt $D^+ \rightarrow \tau$	$0.18 \pm 0.04\%$	$0.17 \pm 0.04\%$
$X_b \to \tau$	$15.5 \pm 2.7\%$	$14.7 \pm 2.3\%$

 \Rightarrow For this study I simulated the $\tau{}^{\prime}{\rm s}$ coming from c

τ simulation

 \Rightarrow 9 % of the τ that are produced in LHCb acceptance ($\eta<5$) have a muon that ends in the magnet tracking stations!

τ simulation

 \Rightarrow 9 % of the τ that are produced in LHCb acceptance ($\eta<$ 5) have a muon that ends in the magnet tracking stations!

 \Rightarrow If we exclude the $\pm 150 cm$ regions we loose 14%.

τ decay model

- $\Rightarrow \tau$ are decayed with PHSP.
- \Rightarrow Might be worth in looking at the specific models:

D^* simulation

 $\Rightarrow 10~\%$ of the τ that are produced in LHCb acceptance have a muon that ends in the tracking stations!

 \Rightarrow Clearly different behaviour than μ .

Hit distrubution of π

z [mm]

D^* simulation

 $\Rightarrow 10~\%$ of the τ that are produced in LHCb acceptance have a muon that ends in the tracking stations!

 \Rightarrow If we exclude the $\pm 150 \text{cm}$ regions we loose 17%.

Λ_c^* simulation

 \Rightarrow 19 % of the τ that are produced in LHCb acceptance have a muon that ends in the tracking stations!

- \Rightarrow Clearly different behaviour than μ .
- \Rightarrow We have two slow pions. The efficiency looks like factorizes :)

Λ_c^* simulation

 \Rightarrow 19 % of the τ that are produced in LHCb acceptance have a muon that ends in the tracking stations!

 \Rightarrow If we exclude the $\pm 150 \text{cm}$ regions we loose 16%.

Summary

 \Rightarrow Using 3 benchmark channels we see there is quite a lot to be gain! \Rightarrow This is just tip of the ice berg.

- ⇒ We need to strengthen the physics program: ex. $\Lambda_c^+(2595)$ decays via intermediate states like Σ_c which allows polarization measurements. ⇒ Will add multi bodies to the studies.
- $\Rightarrow B^{**} \rightarrow KB$ will allow constrained the final state measurements.

 \Rightarrow The length of this detector can be optimised based on our "golden channels".

Backup