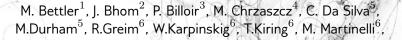
Magnet Stations for LHCb



¹ Cambridge, ² IFJ PAN, ³ LPNHE, ⁴ CERN, ⁵ LANL, ⁶ Aachen, ⁷ EPFL, ⁸ IFJ PAN

Magnet Side Stations - U2PG Review, February 14, 2019

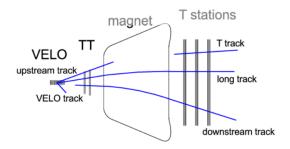
Outline

 \Rightarrow Introduction

 \Rightarrow We will review the effect of an improved tracking for specific channels:

- Prompt Charm decays
- $R(\Lambda_c^*)$
- $R(D^*)$
- Multibody *B* decays
- Σ_b .
- *B**.
- Gluon PDF.
- Spectroscopy.
- \Rightarrow Tracking implementations.
- \Rightarrow Outlook

The idea



 \Rightarrow Tracks with hits in the vertex locator and the TT/UT and not in the Tstations: UPSTREAM tracks.

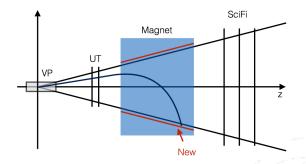
⇒ Those are bend outside of the T-stations acceptance by the magnetic field because of their low-momentum.
⇒ The reduced amount of field between the VELO and the TT, means

that their momentum is computed with a large uncertainty.

 $\Delta p/p = 20-25\%$ current, $\Delta p/p = 15-20\%$ upgrade

Proposal

 \Rightarrow Original idea comes from Sheldon Stone, Paolo Gandini, Liming Zhang: [Tuesday meeting Sept 2nd 2014]



 \Rightarrow It is outside the LHCb acceptancen!! No X_0 added.

 \Rightarrow No need to have a high resolution. $\mathcal{O}(1mm)$ should be enough.

The sensitivity study

 \Rightarrow Take the Gauss v50r0 for upgrade.

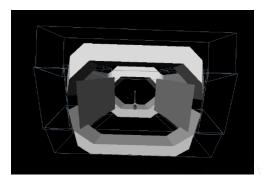
 \Rightarrow Simulate the particle

gun.

 \Rightarrow Decays particles with EvtGen.

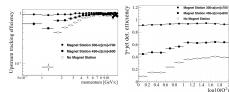
⇒ Put for now a plates in the Magnet (and beyond) and see where the particles hit them.

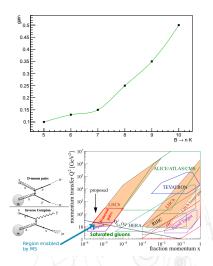
 $\Rightarrow \nu = 7.6.$



Current Physics cases

 $\begin{array}{l} \text{Gains:} \\ \Rightarrow D^* \to D(\pi K)\pi_{\text{slow}} \text{: gain 21 \%.} \\ \Rightarrow B \to \tau\tau \text{: gain: 24 \%.} \\ \Rightarrow R(\Lambda_c^*) = \frac{\mathcal{B}(\Lambda_b \to \Lambda_c^* \tau \nu)}{\mathcal{B}(\Lambda_b \to \Lambda_c^* \mu \nu)}, \\ \Lambda_c^* \to p\pi_{\text{slow}}\pi_{\text{slow}} \text{: gain 60 \%.} \\ \Rightarrow R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \tau \nu)} \text{: gain 26 \%.} \\ \Rightarrow B \to nK \text{: gain 10 } -50 \%. \\ \Rightarrow \Sigma_b \to \Lambda_b \pi \text{: gain 29 \%.} \\ \Rightarrow \text{Gluon PDF: Enabled measurement.} \end{array}$

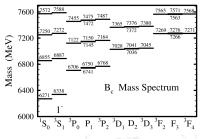




Additional Physics cases

- Additional:
 - $\Rightarrow \Sigma_c \rightarrow \Lambda_c \pi_{\text{slow}}$: gain 19 %.
 - \Rightarrow Low-mass Drell-Yan: gain 15 %.
 - $\Rightarrow \textit{B}_{\textit{c}}^{+}(2S) \rightarrow \textit{B}_{\textit{c}}^{+}\pi_{\text{slow}}\pi_{\text{slow}}\text{: gain 50 \%.}$
 - \Rightarrow Radiative decays?

S.Godfrey, PHYSICAL REVIEW D 70 054017



Additional Physics cases

 \Rightarrow This is just the tip of the ice berg!

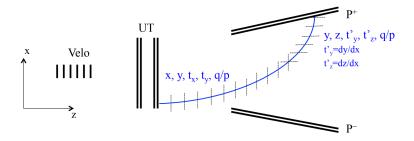
Transition	Expression for Rate	$(c\bar{b})$ rate (keV)
$2^3S_1 \rightarrow 1^3S_1 + \pi\pi$	$A_0(0, 0)$	57 ± 7
$2^1S_0 \rightarrow 1^1S_0 + \pi\pi$	$A_0(0, 0)$	57 ± 7
$3^3S_1 \rightarrow 2^3S_1 + \pi\pi$	$A_0'(0,0)$	3.1 ± 0.6
$3^1S_0 \rightarrow 2^1S_0 + \pi\pi$	$A_0'(0, 0)$	3.1 ± 0.6
$3^3S_1 \rightarrow 1^3S_1 + \pi\pi$	$A_0''(0,0)$	4.2 ± 0.6
$3^1S_0 \rightarrow 1^1S_0 + \pi\pi$	$A_0''(0,0)$	4.2 ± 0.6
$2^3 P_2 \to 1^3 P_2 + \pi \pi$	$\frac{1}{3}A_0(1,1) + \frac{1}{4}A_1(1,1) + \frac{7}{60}A_2(1,1)$	1.0
$2^3P_2 \rightarrow 1P_1' + \pi\pi$	$\frac{1}{12}A_1(1,1) + \frac{3}{20}A_2(1,1)^a$	0.004 ^b
$2^3P_2 \rightarrow 1P_1 + \pi\pi$	$\frac{1}{12}A_1(1, 1) + \frac{3}{20}A_2(1, 1)^a$	0.021 ^b
$2^3P_2 \rightarrow 1^3P_0 + \pi\pi$	$\frac{1}{15}A_2(1, 1)$	0.011
$2P'_1 \rightarrow 1^3P_2 + \pi\pi$	$\frac{5}{36}A_1(1,1) + \frac{1}{4}A_2(1,1)$ °	0.004 ^b
$2P_1 \rightarrow 1^3 P_2 + \pi \pi$	$\frac{5}{36}A_1(1,1) + \frac{1}{4}A_2(1,1)^c$	0.037 ^b
$2P'_1 \rightarrow 1P'_1 + \pi\pi$	$A_0(1, 1) + A_1(1, 1) + \frac{1}{3}A_2(1, 1)^d$	1.2 ^e
$2P_1' \rightarrow 1P_1 + \pi\pi$	$A_0(1, 1) + A_1(1, 1) + \frac{1}{3}A_2(1, 1)^d$	0.1 ^e
$2P_1 \rightarrow 1P_1' + \pi\pi$	$\frac{1}{3}A_0(1, 1) + \frac{1}{12}A_1(1, 1) + \frac{1}{12}A_2(1, 1)^{f}$	0.02 °
$2P_1 \rightarrow 1P_1 + \pi\pi$	$\frac{1}{3}A_0(1,1) + \frac{1}{12}A_1(1,1) + \frac{1}{12}A_2(1,1)^{f}$	2.7 ^e
$2P_1' \rightarrow 1^3 P_0 + \pi \pi$	$\frac{1}{9}A_1(1,1)^{g}$	0
$2P_1 \rightarrow 1^3 P_0 + \pi \pi$	$\frac{1}{9}A_1(1,1)^g$	0
$2^3P_0 \rightarrow 1^3P_2 + \pi\pi$	$\frac{1}{3}A_2(1,1)$	0.0547
$2^3 P_0 \rightarrow 1 P_1' + \pi \pi$	$\frac{1}{3}A_1(1,1)^{h}$	0
$2^3 P_0 \rightarrow 1 P_1 + \pi \pi$	$\frac{1}{3}A_1(1,1)^h$	0
$2^3 P_0 \rightarrow 1^3 P_0 + \pi \pi$	$\frac{1}{3}A_0(1,1)$	0.97
$1^3D_{1,3} \rightarrow 1^3S_1 + \pi\pi$	$\frac{1}{5}A_2(2,0)^i$	4.3
$1D'_2 \rightarrow 1^3S_1 + \pi\pi$	$\frac{1}{5}A_2(2,0)^i$	2.1 ^b
$1D_2 \rightarrow 1^3S_1 + \pi\pi$	$\frac{1}{5}A_2(2,0)^i$	2.2 ^b
$1D'_2 \rightarrow 1^1S_0 + \pi\pi$	$\frac{1}{5}A_2(2,0)^i$	2.2 ^b
$1D_2 \rightarrow 1^1S_0 + \pi\pi$	$\frac{1}{2}A_2(2,0)^i$	2.1 ^b

Marcin Chrzaszcz (CERN)

/ 13

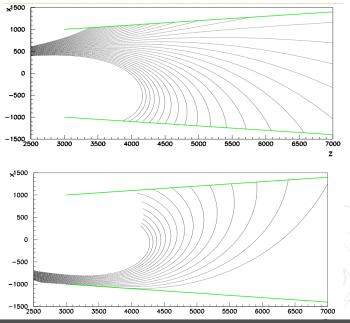
Tracking studies

2-fold Runge-Kutta for MS, P.Billoir



- ⇒ We start from "standard" Runge-Kutta method.
- \Rightarrow If $|t_x| > 1$ we switch steps to x.
- \Rightarrow With VELO + UT we know precisely: $x,\,y,\,t_x,\,t_y.$ We poorly know: $\frac{q}{-} \rightarrow$ MS can help.
- $\stackrel{p}{\Rightarrow}$ Runge-Kutta method has to be inverted with the Newton-Raphson method.

2-fold Runge-Kutta for MS, P.Billoir



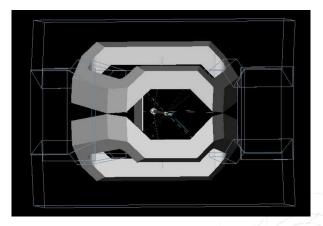
Marcin Chrzaszcz (CERN)

Magnet Stations for LHCb

/ 13

Detector Implementation

Gauss implementation



- \Rightarrow Cloned structures of the SciFi.
- \Rightarrow Digitalization missing.
 - \Rightarrow Run full MC simulations.

Outlook

- \Rightarrow The physics program of magnet stations is growing.
- \Rightarrow For many channels, the MS are improving the efficiencies from $20-30\%(R(D^*))$ to 60%.
- \Rightarrow For other, such as the study of Gluon saturation, the MS are enabling the measurement.
- \Rightarrow MS help when little PHSP is available.
- \Rightarrow Spectroscopy measurements enhanced.
- \Rightarrow Tagging of charm meson and baryon decays \rightarrow reduce background.
- \Rightarrow Tracking algorithms are being developed.
- \Rightarrow Implementing the MS in Gauss.

Backup