$\Lambda_c^+ ightarrow \mathrm{p} \mu \mu$ Status Update and Plans for future

Marcin Chrzaszcz

on behalf of the $\Lambda_c^+ o p \mu \mu$ team:

T.Lesiak(IFJ, Krakow), B.Nowak(IFJ, Krakow), M.Witek (IFJ, Krakow), L.Pescatore(EPFL, Lousanne), M.Stamenkovic(EPFL, Lousanne), M.Martinelli(EPFL, Lousanne)

Analysis and Software Week, CERN April, 2017

Topics covered in this presentation

- 1. Physics of $\Lambda_c^+ \to \mathrm{p} \mu \mu$
- 2. Pre-Selection.
- 3. MVA selection.
- 4. PID.
- 5. Normalization.
- 6. Systematics.
- 7. Expected limits.
- 8. Run2 extensions.

Yellow pages

- \Rightarrow Review started on 31.03.2017.
- ⇒ Reviewers: Tom Blake, Harry Cliff
- ⇒ Twiki:

https://twiki.cern.ch/twiki/bin/view/LHCbPhysics/Lc2PMuMu

⇒ The newest version of the ANA note:

CLIC

Physics of $\Lambda_c^+ \to \mathrm{p}\mu\mu$

 $\Rightarrow \Lambda_c^+ \to p \mu \mu$ is a FCNC in the charm sector:

- ⇒ SM prediction:
- Short distance $Br \sim \mathcal{O}(10^{-8})$
- Long distance $Br \sim \mathcal{O}(10^{-6})$
- Expected to improve by $\mathcal{O}(10^2)$

- ⇒ Current experimental situation:
 - $Br(\Lambda_c^+ \to p\mu\mu) < 4.4 \times 10^{-5}$ at 90 % CL arXiv:1107.4465 (BaBar)

Strategy

- \Rightarrow We follow the strategy of previous analysis: $au o \mu\mu\mu$ and
- $\tau \to p\mu\mu$.
- \Rightarrow Analysis based on 2011 and 2012 data sets.
- \Rightarrow Blind the signal window: $|m_{p\mu\mu}-m_{\Lambda\,\dot{+}}^{PDG}|<40~{\rm MeV}$
- ⇒ We start from stripping and loose pre-selection.
- ⇒ MVA:
- Signal MC.
- Background side-bands.
- ⇒ k-Folding technique applied.
- ⇒ Two BDT are used:
- BDT1 to first clean up the sample.
- BDT2 to further increase the sensitivity.
- \Rightarrow Final 3D optimization: (BDT2, ProbNNp, ProbNNmu).
- \Rightarrow Calculate the UL with CL_{s} .

Trigger

- ⇒ We decided to based the analysis on muon triggers:
- L0
 - Lambda_cplus_L0MuonDecision_TOS
 - Lambda_cplus_L0DiMuonDecision_TOS
- HLT1
 - Lambda cplus Hlt1TrackMuonDecision TOS
 - Lambda_cplus_Hlt1DiMuonLowMassDecision_TOS
 - Lambda cplus Hlt1TrackAllL0Decision TOS
- HLT2
 - Lambda_cplus_Hlt2CharmHadD2HHHDecision_TOS;
 - Lambda_cplus_Hlt2DiMuonDetachedDecision_TOS;
 - Lambda_cplus_Hlt2CharmSemilep3bodyD2KMuMuDecision_TOS;
 - Lambda_cplus_Hlt2CharmSemilepD2HMuMuDecision_TOS;

Stripping

StrippingTau23MuTau2PMuMuLine				
Condition	$\Lambda_c^+ o \mathrm{p}\mu\mu$			
μ^{\pm} and ${ m p}$				
P_T	$> 300 \; \mathrm{MeV/c}$			
Track χ^2 /ndf	< 3			
IP χ^2 /ndf	> 9			
\mid PID μ^{\pm}	PIDmu> -5 and $(PIDmu-PIDK)>0$			
PID p	PID _P >10			
$\Lambda_{ m c}^+$				
Δm	$< 150 \mathrm{MeV/c^2}$			
Vertex χ^2	< 15			
IP χ^2	< 225			
$c\tau$	$> 100 \mu m$			
Lifetime fit χ^2	< 225			

 $[\]Rightarrow$ In Run2 we have a dedicated stripping/HLT2 lines for μ,e lepton flavours.

Futher preselection

Common cuts		
$m_{\mu\mu} > 250 \; {\rm MeV/c^2}$		
proton $ProbNNp > 0.1$		
$\mu^+, \mu^- ProbNNmu > 0.1$		
$10~{\rm GeV/c} < p_{\rm proton} < 100~{\rm GeV/c}$		
Signal channel		
$ m_{\mu\mu} - m_{\omega} > 40 \text{ MeV/c}^2$		
$ m_{\mu\mu} - m_{\phi} > 40 \text{ MeV/c}^2$		
Normalization channel		
$ m_{\mu\mu} - m_{\phi} < 35 \text{ MeV/c}^2$		

MVA Selection 1/2

- \Rightarrow The BDT1 uses a small set of available variables related to Λ_c^+ candidate:
- Lambda_cplus_IP_OWNPV
- Lambda_cplus_IPCHI2_OWNPV
- TMath :: $Exp(-1000 * Lambda_cplus_TAU)$
- Lambda_cplus_ENDVERTEX_CHI2
- Lambda_cplus_PT
- Lambda_cplus_FD_OWNPV
- $\bullet \ Lambda_cplus_FDCHI2_OWNPV \\$

MVA Selection 2/2

 \Rightarrow We choose a loose cut (BDT1 > -0.1) to clean up the sample:

$$\Lambda_c \to p\phi(\mu\mu)$$

10 /20

Normalization

$$\Rightarrow \Lambda_c \to p\phi(\mu\mu)$$
:

- Same final state!
- Most of the systematics cancel in the ratio.
- Kinematics difference will only remain.
- Low Br: $Br(\Lambda_c \rightarrow p\phi(\mu\mu)) = (2.98 \pm 0.63) \times 10^{-7}$

$$\Rightarrow \Lambda_c \to p\pi\pi$$
:

- Different final state!
- The systematics will not cancel in the ratio.
- Need to understand the $\pi\pi$ spectrum.
- High branching fraction: $Br(\Lambda_c \rightarrow \mathrm{p}\pi\pi) = \\ (4.3 \pm 2.3) \times 10^{-3}$

We have chosen the $\Lambda_c \to \mathrm{p} \phi(\mu\mu)$ as normalization channel.

MVA Selection II

Added variables related to the daughter tracks.

- ⇒ The BDT was checked against the correlation with mass on MC background.
- \Rightarrow All cross-checks passed.

PID

⇒ The PID in this analysis is done using re sampling the PID distributions.

- PIDCalib for muons does not cover the low p_T muons (10~%) of the sample.
- We used the $D_s \to \pi \phi(\mu \mu)$.
- The same procedure was used in the different analysis with this problem.
- The sample is currently being included to the standard sample from the PID WG.

13/20

Optimization

- ⇒ Optimization was performed on a TOY MC sample.
- ⇒ The toys were generated using PDF from signal MC and sideband sample.
- ⇒ Optimization was done on grid of points, using 100 TOYs peer point.
- $\Rightarrow \mathrm{CL}_{\mathrm{s}}$ was used as FOM.

Variable	Cut
BDT2	> 0.0
ProbNNp	> 0.68
ProbNNmu	> 0.38

Peaking backgrounds 1/2

⇒ There are several sources of peaking background:

Resonance	$BF(\Lambda_{\operatorname{c}}^+ o \mathrm{p}X)$	$BF(X o \mu \mu)$	Total BF
η	-	$(5.8 \pm 0.8) \times 10^{-6}$	-
ρ	-	$(4.55 \pm 0.28) \times 10^{-5}$	-
ω	-	$(9.0 \pm 3.1) \times 10^{-5}$	-
ϕ	$(1.04 \pm 0.21) \times 10^{-3}$	$(2.87 \pm 0.19) \times 10^{-4}$	$(2.98 \pm 0.63) \times 10^{-7}$
Resonance	$BF(\Lambda_{\operatorname{c}}^+ \to \mathrm{p}X)$	$BF(X \to \mu \mu \gamma)$	Total BF
η	-	$(3.1 \pm 0.4) \times 10^{-4}$	-
η '	-	$(1.08 \pm 0.27) \times 10^{-4}$	- '\

⇒ Unfortunately not all of the BF are known...

 \Rightarrow We took the adequate decay of D mesons. We ended up with BF $\mathcal{O}(10^{-9})$ for not vetoed decays, which is much below our sensitivity (see further slides).

Peaking backgrounds 2/2

- \Rightarrow The other peaking background is a harmonic decay $\Lambda_c^+ \to p\pi\pi$.
- ⇒ Estimated from MC sample
- \Rightarrow Used the resampled PID response.
- ⇒ Observed number of events in the signal window.

⇒ Took into account in background estimation.

Normalization

⇒ Master equation:

$$\frac{Br(\Lambda_c \to \mathrm{p}\mu\mu)}{Br(\Lambda_c \to \mathrm{p}\phi(\mu\mu))} = \frac{\epsilon_{\mathrm{norm}}^{\phantom{\mathrm{TOT}}}}{\epsilon_{\mathrm{sig}}^{\phantom{\mathrm{TOT}}}} \times \frac{N_{\mathrm{sig}}}{N_{\mathrm{norm}}},$$

where

$$\frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}}^{\text{TOT}} = \frac{\epsilon_{\text{norm}}^{\text{STRIP}}}{\epsilon_{\text{sig}}} \times \frac{\epsilon_{\text{norm}}^{\text{COMM}}}{\epsilon_{\text{sig}}} \times \frac{\epsilon_{\text{norm}}^{\text{SPEC}}}{\epsilon_{\text{sig}}}$$

- \Rightarrow Signal window divided in 6 equal bins (7 MeV/c²)
- ⇒ Many of the ratios close to one:

Systematics

Uncertainty source	Value
Efficiency ratio R_{strip} (statistical)	0.2 %
Efficiency ratio R_{comm} (statistical)	3.37 %
Efficiency ratio R_{comm} (BDT2 cut)	0.4 %
Efficiency ratio R_{comm} (PIDCalib samples)	0.71 %
Width of the signal peak	0.55 %
Yield of normalization channel	11.8 %
Dedicated PID resampling	0.26 %
$\Lambda_c \to \mathrm{p}\phi(\mu\mu)$	21.5 %
Variation of signal decay model	15.3 %

Expected limits

⇒ Putting all together one gets:

The expected limits:

$$Br(\Lambda_c \to \mathrm{p}\mu\mu) < 5.9 \times 10^{-8} \ \mathrm{at} \ 90\% \ \mathrm{CL}$$

 \Rightarrow The RC started looking at the ANA note.

9/20

Run 2 plans

- ⇒ We already started working on Run2 analysis.
- ⇒ The program is expanding:
- $Br(\Lambda_c^+ \to p\phi)$
- $Br(\Lambda_c^+ \to p\mu\mu)$
- $R(\Lambda_c^+) = \frac{Br(\Lambda_c^+ \to p\mu\mu)}{Br(\Lambda_c^+ \to pee)}$
- \bullet LFV: $\Lambda_c \to \mathrm{p} \mu e$
- and maybe more ideas?

- \Rightarrow Λ_c^+ is a exciting system that is not fully explored!
- ⇒ We have a rich physics program to be studied with Run2 data.

Backup

