Rare decays in the beauty, charm and strange sector

Marcin Chrzaszcz mchrzasz@cern.ch

FPCP, Hyderabad 14-18 July 2018

M.Chrzaszcz (CERN)

Rare decays in the beauty, charm and strange sector

<u>LHCb</u>

Outline

1. Beauty decays

$$\circ \ \Lambda_b \to \Lambda \mu \mu \\ \circ \ \bar{B}^0_s \to K^* \mu \mu$$

$$\circ \quad \begin{array}{l} B_{(s)} \to e\mu \\ \circ \quad B \to K^* e\mu. \end{array}$$

2. Charm decays

- $\circ~\Lambda_c \to {\not\!\!\!\! p} \mu \mu$
- $\circ D \to h h \mu \mu$
- 3. Strange decays

$$\circ K_{S}^{0} \to \mu \mu$$

$$\circ \Sigma \to p \mu \mu$$

Why rare decays?

- The SM allows only charged interactions to change flavour.
 Other interactions are flavour conserving.
- One can escape this constraint and produce $b \rightarrow s$ and $b \rightarrow d$ at loop level.
 - $\circ~$ These kinds of processes are suppressed in the SM \rightarrow Rare decays.
 - New Physics can enter in the loops.

 Z^0

 W^{\pm}

LHCb detector - tracking

- - $\begin{array}{c} L \sim 7 \, \text{mmSV} \\ PV & B^0 \\ \hline p & & \\ IP & & p \\ \hline \end{array}$

- Excellent Impact Parameter (IP) resolution (20 μ m).
 - \Rightarrow Identify secondary vertices from heavy flavour decays
- Proper time resolution $\sim~40-50~{\rm fs.}$
 - \Rightarrow Good separation of primary and secondary vertices.
- Excellent momentum ($\delta p/p \sim 0.5-1.0\%$) and inv. mass resolution. \Rightarrow Low combinatorial background.

- Excellent Muon identification $\epsilon_{\mu
 ightarrow \mu} \sim 97\%$, $\epsilon_{\pi
 ightarrow \mu} \sim 1-3\%$
- Good $K \pi$ separation via RICH detectors, $\epsilon_{K \to K} \sim 95\%$, $\epsilon_{\pi \to K} \sim 5\%$.
 - \Rightarrow Reject peaking backgrounds.
- High trigger efficiencies, low momentum thresholds. $B \to J\!/\!\psi X$: Trigger $\sim 90\%.$

Rare beauty decays

$b \rightarrow s \ell \ell$ family

- $B \rightarrow K^* \mu \mu$
- $B_{\rm s}^0 \to \phi \mu \mu$
- $\Lambda_h \rightarrow \not D K \mu \mu$
- LUV: R_K , R_{κ^*}

 \Rightarrow Too many results to be covered in one talk! Please see A. Oyanguren's talk for more!

• $B \rightarrow \ell \ell$

 $b \rightarrow s\gamma$ family • $B \rightarrow I/\psi \gamma$

• $B \rightarrow K\pi\pi\gamma$

 $b \rightarrow d\ell \ell$ family • $B \rightarrow \pi \pi \mu \mu$

• $\bar{B}_{s}^{0} \rightarrow K^{*} \mu \mu$

• $\Lambda_b \rightarrow p \pi \mu \mu$

• $I FV \cdot B \rightarrow \ell \ell'$ • LFV in τ

Purely leptonic family

$\Lambda_b \to \Lambda \mu \mu$

⇒ $b \rightarrow s\mu\mu$ in baryon sector. ⇒ Because of spin 1/2 nature of the baryon there the system has to be described by 5 angles: 1710.00746 ⇒ Impossible to perform a likelihood fit. Need to use

moments:

$$M_i = \frac{3}{32\pi^2} \int \sum_{i=1}^{34} K_i(q^2) f(\overrightarrow{\Omega}) d\overrightarrow{\Omega}$$

 \Rightarrow In total we have 34 observables!

LHCb-PAPER-2018-029

$\Lambda_b \to \Lambda \mu \mu$

- \Rightarrow 610 events observed at high q^2 .
- \Rightarrow Angular efficiency modelled in 6D.

/26

$b \rightarrow d$ transitions

⇒ The $b \to d$ is further suppressed by $|V_{td}|/|V_{ts}| \to \mathcal{B} \sim \mathcal{O}(10^{-8})$. ⇒ Already lots of results in Run1:

 \Rightarrow The ratio between the $b \rightarrow s$ and $b \rightarrow d$ can be used to determine some CKM elements:

$$\frac{\mathcal{B}(\textbf{B} \to \pi \mu \mu)}{\mathcal{B}(\textbf{B} \to \textbf{K} \mu \mu)} \sim |V_{td}/V_{ts}| = 0.20 \pm 0.02$$

 \Rightarrow Large improvements expected in Run2.

 $\Rightarrow 4.6 \text{ fb}^{-1} \text{ of data!}$ $\Rightarrow \text{Analysis in 4 bins of NN}$

response.

⇒ Signal yield determined from a simultaneous fit to the NN response bins.

- \Rightarrow Normalized to $B \rightarrow K^* J/\psi$.
- \Rightarrow First evidence with 3.4 σ .
- \Rightarrow The measured branching fraction:

 $\mathcal{B}(\bar{B}_{s}^{0} \to K^{*}\mu\mu) = (2.9 \pm 1.0(\text{stat}) \pm 0.2(\text{syst}) \pm 0.3(\text{norm})) \times 10^{-8}$

 \Rightarrow For now consistent with SM predictions arXiv:1803.05876

 $\bar{B}_{s}^{0} \rightarrow K^{*} \mu \mu$

\Rightarrow 4.6 fb⁻¹ of data! \Rightarrow Analysis in 4 bins of NN

response.

 \Rightarrow Signal yield determined from a simultaneous fit to the NN response bins.

- \Rightarrow Normalized to $B \rightarrow K^* / \psi$.
- \Rightarrow First evidence with 3.4 σ .
- \Rightarrow The measured branching fraction:

 $\mathcal{B}(\bar{B}^0_{s} \to K^* \mu \mu) = (2.9 \pm 1.0(\text{stat}) \pm 0.2(\text{syst}) \pm 0.3(\text{norm})) \times 10^{-8}$

 \Rightarrow For now consistent with SM predictions arXiv:1803.05876

 $\bar{B}_{s}^{0} \rightarrow K^{*} \mu \mu$

Lepton Flavour/Number Violation

arxiv::1609.08895

Lepton Flavour Violation(LFV):

 \Rightarrow After μ^- was discovered it was logical to think of it as an excited e^- .

- Expected: $B(\mu \rightarrow e\gamma) \approx 10^{-4}$
- Unless another ν , in intermediate vector boson loop cancels.

- Up to this day charged LFV is being searched for in various decay modes.
- LFV was already found in neutrino sector.
- \Rightarrow Anomalies may suggest connections between LUV and LFV.

$$\mathcal{B}(B \to Ke\mu) \sim 3 \cdot 10^{-8} \left(\frac{1 - R_K}{0.23}\right) \qquad \qquad \mathcal{B}(B \to K\mu\tau) \sim 2 \cdot 10^{-8} \left(\frac{1 - R_K}{0.23}\right)$$
$$\frac{\mathcal{B}(B_s^0 \to e\mu)}{\mathcal{B}(B_s^0 \to \mu\mu)} \sim 0.01 \left(\frac{1 - R_K}{0.23}\right) \qquad \qquad \frac{\mathcal{B}(B_s^0 \to \tau\mu)}{\mathcal{B}(B_s^0 \to \mu\mu)} \sim 4 \left(\frac{1 - R_K}{0.23}\right)$$

$B_{(s)} \to e\mu$

 \Rightarrow Need to deal with bremsstrahlung: different efficiency and mass shapes.

 \Rightarrow Fit performed separately in bremsstrahlung categories.

[JHEP 1803 (2018) 078]

[Belle, arxiv::1807.03267]

26

 \Rightarrow Fit to M_{bc} :

 $B \rightarrow K^* e \mu$

$$M_{bc} = \sqrt{\left(E_{beam}\right)^2 - \left(p_B\right)^2}$$

M.Chrzaszcz (CERN)

 $\Lambda_c \rightarrow p \mu \mu$

 $\Rightarrow \text{SM predictions:} \\ \mathcal{O}(10^{-8}) \\ \Rightarrow \text{Long distance effects:} \\ \mathcal{O}(10^{-6}) \end{aligned}$

 \Rightarrow Previous measurement done by Babar: ${\rm Br}(\Lambda_c^+ \to p \mu^+ \mu^-) < 4.4 \cdot 10^{-5}$ at 90% CL

$\Lambda_c \rightarrow p \mu \mu$

[PHYS. REV. D 97, 091101 (2018)]

- \Rightarrow Blind analysis with the normalization to the $\Lambda_c \rightarrow p \phi(\mu \mu)$.
- \Rightarrow BDT to reduce combinatorial background.
- \Rightarrow The dominant background: $\Lambda_c \rightarrow p\pi\pi$: 2.0 ± 1.1 events

$\Lambda_c \rightarrow p \mu \mu$

 $\Rightarrow \mbox{ lt's the first observation of } \\ \Lambda_c \rightarrow p \mu \mu \mbox{ in the } \omega \mbox{ region, with } \\ 5.0 \ \sigma \mbox{ significance.} \end{cases}$

⇒ The corresponding branching fraction reads:

$$\mathcal{B}(\Lambda_c \to p\omega) = (9.4 \pm 3.2 \pm 1.0 \pm 2.0) \cdot 10^{-4}$$

 \Rightarrow No significant excess observed in the nonresonant region:

 $\mathcal{B}(\Lambda_c \to p\mu\mu) < 7.7(9.6) \times 10^{-8}$

⇒ Improving BaBar result by 3 orders of magnitude!

[PHYS. REV. D 97, 091101 (2018)]

 $D \rightarrow h h \mu \mu$

[PHYS. REV. LETT. 119, 181805 (2017)]

 \Rightarrow First observation with $2~{\rm fb}^{-1}$ of data!

- \Rightarrow Dominated by long distance contributions.
- ⇒ Normalized to $D \rightarrow K\pi[\mu\mu]_{\omega/\rho}$ ⇒ LHCb has measured the branching fractions:

$$\mathcal{B}(D \to \pi \pi \mu \mu) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \cdot 10^{-7}$$

$$\mathcal{B}(D \to KK\mu\mu) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \cdot 10^{-1}$$

$D \rightarrow h h \mu \mu$

[arXiv:1806.10793]

⇒ The challenge is to disentangle the SD and LD. ⇒ Angular observables can help:

$$A_{FB} = \frac{\Gamma(\cos\theta_{\mu} > 0) - \Gamma(\cos\theta_{\mu} < 0)}{\Gamma(\cos\theta_{\mu} > 0) + \Gamma(\cos\theta_{\mu} < 0)}$$

$$\frac{\mu^{+}}{\vec{n}_{\mu\mu}} = \frac{\mu^{+}}{\vec{e}_{\mu}} + \frac{\rho_{\vec{e}_{hh}}}{\vec{e}_{h-}} = \frac{\rho_{hh}}{\vec{e}_{h-}} + \frac{\rho_{hh}}{\vec{e}_{h-}} + \frac{\rho_{hh}}{\vec{e}_{h+}} + \frac{\rho_{hh}}{\vec{e}_$$

$$A_{2\phi} = \frac{\Gamma(\sin 2\phi > 0) - \Gamma(\sin 2\phi < 0)}{\Gamma(\sin 2\phi > 0) + \Gamma(\sin 2\phi < 0)}$$

$$A_{CP} = \frac{\Gamma(D \to hh\mu\mu) - \Gamma(\bar{D} \to hh\mu\mu)}{\Gamma(D \to hh\mu\mu) + \Gamma(\bar{D} \to hh\mu\mu)}$$
Analysis with 5 fb⁻¹.
See M. Gersabeck talk for more details!

M.Chrzaszcz (CERN)

Rare decays in the beauty, charm and strange sector

[arXiv:1806.10793]

$D \rightarrow h h \mu \mu$

⇒ Need to perform a 4D
 acceptance correction.
 ⇒ BDT technique used to
 determine it.

 \Rightarrow Yields done by a weighted likelihood fit.

All observables consistent with 0!

EUR. PHYS. J. C, 77 10 (2017) 678

$K_{\rm S}^0 \to \mu\mu$

 $\Rightarrow pp$ collisions create enormous amount of strange mesons.

 \Rightarrow Can be used to search for $K_{\rm S}^0 \rightarrow \mu \mu$.

 \Rightarrow SM prediction:

 $Br(K_5^0 \to \mu\mu) = (5.0 \pm 1.5) \times 10^{-12}$

 \Rightarrow Dominated by the long distance effects.

 \Rightarrow Bkg dominated by $K_{S}^{0} \rightarrow \pi\pi$.

⇒ No significant enhancement of signal has been observed and UL was set:

 ${
m Br}({\it K_{\rm S}^{\it 0}}
ightarrow \mu \mu) < 0.8(1.0) imes 10^{-9} {
m at } 90(95)\%$ CL

26

 $\Sigma \rightarrow p \mu \mu$

PHYS. REV. LETT. 120, 221803 (2018)

 $\Rightarrow \Sigma \rightarrow p\mu\mu$ is a $s \rightarrow d$ transition, which in SM are dominated by LD: $\mathcal{O}(10^{-8})$.

 $\Rightarrow \mbox{Previously HyperCP collaboration reported evidence of this decay:} \\ \mathcal{B}(\Sigma \to p \mu \mu) = \left(8.6^{+6.6}_{-5.4} \pm 5.5\right) \cdot 10^{-8} \ \ \mbox{[Phys Rev Lett 94 021801, 2005]} \label{eq:basic}$

 \Rightarrow Calibrated with $K \rightarrow \pi \pi \pi$: resolution of 4.28 MeV/c².

Used 3 fb^{-1} of data.

 $\Sigma \rightarrow p \mu \mu$

$$\mathcal{B}(\Sigma \to p\mu\mu) = \left(2.2^{+1.8}_{-1.3}\right) \cdot 10^{-8}$$

Summary

 \Rightarrow FCNC processes provide powerful constraints on extensions of the SM.

 \Rightarrow Large $b\bar{b}$ cross-section provides a large sample of "rare" decay processes.

 \Rightarrow More results being updated with Run2 data.

 \Rightarrow Stay tuned for more results!

Backup

M.Chrzaszcz (CERN)

Rare decays in the beauty, charm and strange sector