Anomalies in Physics or Physics of anomalies?

Marcin Chrząszcz mchrzasz@cern.ch

> IMSc seminar July 24, 2018

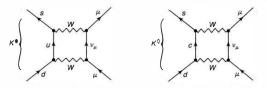
CERN

Outline

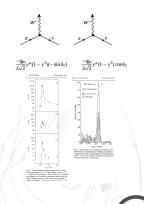
- 1. Why flavour is important.
- 2. The flavour anomalies:
 - $\begin{array}{l} \circ & R(\textit{D}^*) \\ \circ & R_K \text{ and } R_{\textit{K}^*} \end{array}$
 - $\circ \ P_5'$
- 3. Global fits results.
- 4. Conclusions.

Why Flavour is important?

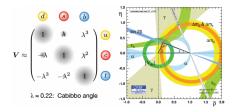
A lesson from history - GIM mechanism



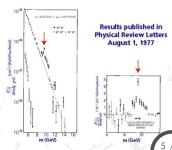
- Cabibbo angle was successful in explaining dozens of decay rates in the 1960s.
- There was, however, one that was not observed by experiments: $K^0 \rightarrow \mu^- \mu^+$.
- Glashow, lliopoulos, Maiani (GIM) mechanism was proposed in the 1970 to fix this problem. The mechanism required the existence of a 4^{th} quark.
- At that point most of the people were skeptical about that. Fortunately in 1974 the discovery of the J/ψ meson silenced the skeptics.



A lesson from history - CKM matrix

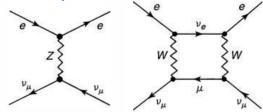


- Similarly, CP violation was discovered in 1960s in the neutral kaons decays.
- 2×2 Cabbibo matrix could not allow for any CP violation.
- For CP violation to be possible one needs at least a 3 × 3 unitary matrix
 ↔ Cabibbo-Kobayashi-Maskawa matrix (1973).
- It predicts existence of *b* (1977) and *t* (1995) quarks.

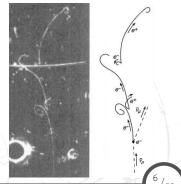


Marcin Chrząszcz (CERN, IFJ PAN)

A lesson from history - Weak neutral current



- Weak neutral currents were first introduced in 1958 by Buldman.
- Later on they were naturally incorporated into unification of weak and electromagnetic interactions.
- 't Hooft proved that the GWS models was renormalizable.
- Everything was there on theory side, only missing piece was the experiment, till 1973.



Modern Flavour Physics

Study the CKM matrix

Arises from Higgs Yukawa interactions Unitary in the SM, with one CP violating phase.

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix} = V_{CKM} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

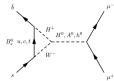
Test unitarity with many measurements.

Find new sources of CPV wru anti-matter!?

Measure decays of ground state b-hadrons

Properties influenced by virtual particles in NP models Compare results to SM predictions

(need QCD input).



Particularly sensitive to NP models preferring third generation.

Modern Flavour Physics

Study the CKM matrix

Arises from Higgs Yukawa interactions

Unitary in the SM, with one CP violating phase.

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix} = V_{CKM} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

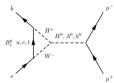
Test unitarity with many measurements.

Find new sources of CPV wru anti-matter!?

Measure decays of ground state b-hadrons

Properties influenced by virtual particles in NP models Compare results to SM predictions

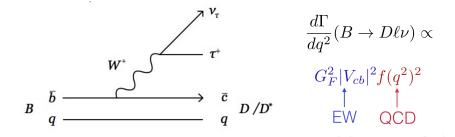
(need QCD input).



Particularly sensitive to NP models preferring third generation.

Why semi-leptonic decays?

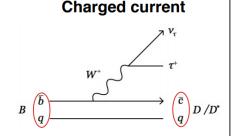
 \Rightarrow A decay is semi-leptonic if its products are part leptons and part hadrons.



 \Rightarrow These decays can be factorised into the weak and strong parts, greatly simplifying theoretical calculations.

Types of semi-leptonic decays

Two types of semi-leptonic b-decay

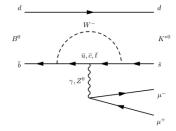


Can proceed via tree level -large O(%) branching fractions.

Factorised up to (small) QED corrections.

When you factorise, QCD part broken down into form-factors.

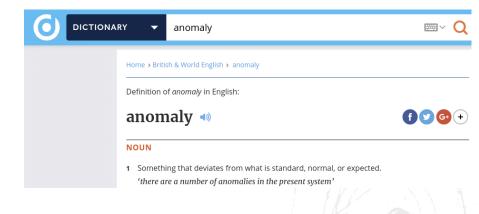
Neutral current



Forbidden at tree level - low O(10-6) branching fractions.

Factorised up to corrections from $B \rightarrow h(\rightarrow \mu^+ \mu^-)h$ decays.

Anomalies



Anomalies

- \Rightarrow Today I will talk about three anomalies in *B* decays:
- $R(D^*)$
- *R*_{K/K}* *P*'₅

Anomaly 1

 $R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \mu \nu)}$

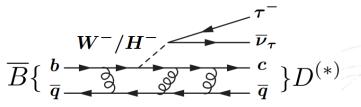
 $R(D^*)$

 \Rightarrow Large rate of charged current decays allow for measurement in semi-tauonic decays

$$R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \mu \nu)}$$

 \Rightarrow Form ratio of decays with different lepton generations. \Rightarrow Cancel QCD uncertainties.

 $\Rightarrow R(\textit{D}^*)$ is sensitive to the NP with strong 3rd generation couplings.



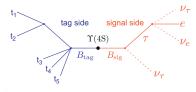
The Rule of three

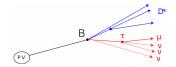
	BaBar	Belle	LHCb
#B's produced	O(400M)	O(700M)	O(800B)*
Production mechanism	$\Upsilon(4S) \to B\bar{B}$	$\Upsilon(4S) \to B\bar{B}$	$pp ightarrow gg ightarrow bar{b}$
Publications	Phys.Rev.Lett 109, 101802 (2012)	Phys.Rev.D 92, 072014 (2015)	Phys.Rev.Lett.115, 111803 (2015)
	Phys. Rev. D 88, 072012 (2013)	arXiv:1603.06711	

Experimental challenges

⇒ With the $\tau \rightarrow \mu \nu \nu$ decay we are missing 3 neutrinos! ⇒ No sharp peak in any distributions.

 \Rightarrow At B-factories, can control this using tagging technique.

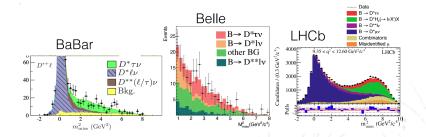




⇒ More difficult at LHCb, compensate using large boost (flight information) and huge B production

Signal fits

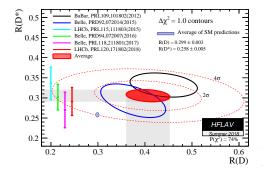
- \Rightarrow Three main backgrounds:
- $B \rightarrow D^* \ell \nu$.
- $B \rightarrow D^{**} \ell \nu$.
- $B \rightarrow DD^*X$



 \Rightarrow Fit variables which discriminate between the signal and background modes.

Results

 \Rightarrow All experiments see an access w.r.t. to SM prediction:



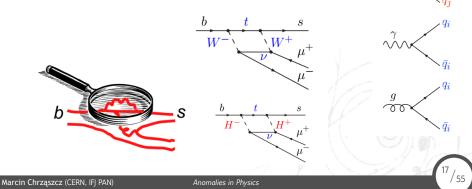
⇒ Theoretical uncertainties negligible. ⇒ The ball is on the experimental side.

Introduction to anomaly 2 & 3

• The SM allows only the charged interactions to change flavour.

• Other interactions are flavour conserving.

- One can escape this constraint and produce $b \rightarrow s$ and $b \rightarrow d$ at loop level.
 - $\circ~$ These kind of processes are suppressed in SM \rightarrow Rare decays.
 - New Physics can enter in the loops.



 Z^0

 W^{\pm}

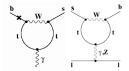
Analysis of Rare decays

Analysis of FCNC in a model-independent approach, effective Hamiltonian:

$$b \to s\gamma(^*) : \mathcal{H}^{SM}_{\Delta F=1} \propto \sum_{i=1}^{10} V^*_{ts} V_{tb} \mathcal{C}_i \mathcal{O}_i + \dots$$

• $\mathcal{O}_7 = \frac{e}{16\pi^2} m_b \left(\bar{s} \sigma^{\mu\nu} P_R b \right) F_{\mu\nu}$ • $\mathcal{O}_9 = \frac{e^2}{16\pi^2} (\bar{s} \gamma_\mu P_L b) \left(\bar{\ell} \gamma_\mu \ell \right)$

•
$$\mathcal{O}_{10} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) \ (\bar{\ell}\gamma_\mu \gamma_5 \ell), \dots$$



• SM Wilson coefficients up to NNLO + e.m. corrections at $\mu_{ref} = 4.8$ GeV [Misiak et al.]:

$$\mathcal{C}_7^{\rm SM} = -0.29, \, \mathcal{C}_9^{\rm SM} = 4.1, \, \mathcal{C}_{10}^{\rm SM} = -4.3$$

• NP changes short distance $\mathcal{C}_i - \mathcal{C}_i^{\mathrm{SM}} = \mathcal{C}_i^{\mathrm{NP}}$ and induce new operators, like

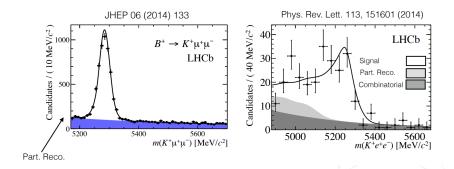
 $\mathcal{O}_{7,9,10}' = \mathcal{O}_{7,9,10} \ (P_L \leftrightarrow P_R)$... also scalars, pseudoescalar, tensor operators...

Anomaly 2

 $R_{\mathrm{K/K}^{*}} = \frac{\mathcal{B}(\mathrm{B} \to \mathrm{K/K}^{*} \mu \mu)}{\mathcal{B}(\mathrm{B} \to \mathrm{K/K}^{*} ee)}$

Measurement at LHCb

- \Rightarrow Most precise measurements performed at LHCb.
- \Rightarrow Main challenge is due to electron Bremsstrahlung.



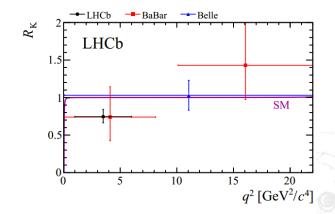
 \Rightarrow To protect ourself from electron reconstruction issue we use double ratio:

$$R_{K} = \frac{\mathcal{B}(\mathbf{B} \to \mathbf{K}\mu\mu) \times \mathcal{B}(\mathbf{B} \to \mathbf{K}\mathbf{J}/\psi(\to ee))}{\mathcal{B}(\mathbf{B} \to \mathbf{K}ee) \times \mathcal{B}(\mathbf{B} \to \mathbf{K}\mathbf{J}/\psi(\to \mu\mu))}$$

Marcin Chrząszcz (CERN, IFJ PAN)

Result

$$R_K = 0.745^{+0.090}_{-0.074}$$
(stat.) ± 0.036 (syst)



 $\Rightarrow 2.6~\sigma$ away from SM prediction.

Marcin Chrząszcz (CERN, IFJ PAN)

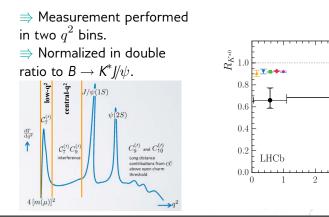
Anomalies in Physics

²¹/₅₅

The continuation - R_{κ^*}

 \Rightarrow The neutral continuation of the R_K measurement is to measure its partner:

$$R_{\mathbf{K}^*} = \frac{\mathcal{B}(\mathbf{B} \to \mathbf{K}^* \mu \mu)}{\mathcal{B}(\mathbf{B} \to \mathbf{K}^* ee)}$$



LHCb

CDHMV

flav.io

BIP

EOS

JC

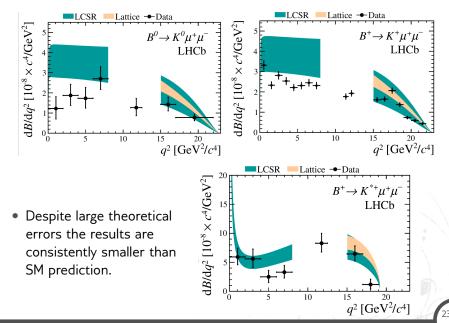
 $\frac{5}{q^2} \frac{6}{[\text{GeV}^2/c^4]}$

3

4

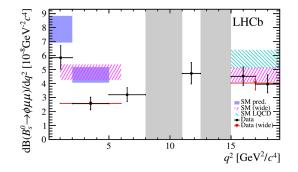
Marcin Chrząszcz (CERN, IFJ PAN)

Branching fraction measurements of $B \rightarrow K^{*\pm} \mu \mu$



Marcin Chrząszcz (CERN, IFJ PAN)

Branching fraction measurements of $B_s^0 \rightarrow \phi \mu \mu$



- Recent LHCb measurement [JHEPP09 (2015) 179].
- Suppressed by $\frac{f_s}{f_d}$.
- Cleaner because of narrow ϕ resonance.
- 3.3σ deviation in SM in the $1 6 {\rm GeV}^2$ bin.

Anomaly 3

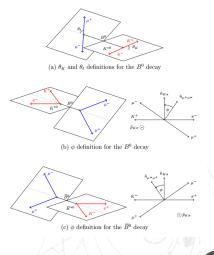
 $P_5' = \sqrt{2} \frac{\Re(A_{\perp}^L A_{\parallel}^{L^*} - A_{\perp}^R A_{\parallel}^{R^*})}{\sqrt{|A_0|^2 (|A_{\perp}|^2 + |A_0|^2)}}$

$B^0 ightarrow K^* \mu^- \mu^+$ kinematics

⇒ The kinematics of $B^0 \to K^* \mu^- \mu^+$ decay is described by three angles θ_l , θ_k , ϕ and invariant mass of the dimuon system (q^2) .

⇒ $\cos \theta_k$: the angle between the direction of the kaon in the \mathcal{K}^* ($\overline{\mathcal{K}^*}$) rest frame and the direction of the \mathcal{K}^* ($\overline{\mathcal{K}^*}$) in the B^0 (\overline{B}^0) rest frame. ⇒ $\cos \theta_l$: the angle between the direction of the μ^- (μ^+) in the dimuon rest frame and the direction of the dimuon in the B^0 (\overline{B}^0) rest frame.

⇒ ϕ : the angle between the plane containing the μ^- and μ^+ and the plane containing the kaon and pion from the K^* .



$B^0 \rightarrow K^* \mu^- \mu^+$ kinematics

⇒ The kinematics of $B^0 \to K^* \mu^- \mu^+$ decay is described by three angles θ_l , θ_k , ϕ and invariant mass of the dimuon system (q^2) .

$$\begin{split} \frac{d^4 \Gamma}{dq^2 \operatorname{dcos} \theta_K \operatorname{dcos} \theta_l d\phi} &= \frac{9}{32\pi} \left[J_{1s} \sin^2 \theta_K + J_{1c} \cos^2 \theta_K + (J_{2s} \sin^2 \theta_K + J_{2c} \cos^2 \theta_K) \cos 2\theta_l \right. \\ &+ J_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + J_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ &+ (J_{6s} \sin^2 \theta_K + J_{6c} \cos^2 \theta_K) \cos \theta_l + J_7 \sin 2\theta_K \sin \theta_l \sin \phi + J_8 \sin 2\theta_K \sin 2\theta_l \sin \phi \\ &+ J_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \right], \end{split}$$

 \Rightarrow This is the most general expression of this kind of decay.

Credit where it belongs

First time this eq. was written by prof. R. Sinha in 1996! hep-ph/9608314

Marcin Chrząszcz (CERN, IFJ PAN)

Transversity amplitudes

 \Rightarrow One can link the angular observables to transversity amplitudes

$$J_{1s} \quad = \quad \frac{(2+\beta_{\ell}^2)}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right] + \frac{4m_{\ell}^2}{q^2} \mathrm{Re} \left(A_{\perp}^L A_{\perp}^{R*} + A_{\parallel}^L A_{\parallel}^{R*} \right) \,,$$

$$J_{1c} = |A_0^L|^2 + |A_0^R|^2 + \frac{4m_\ell^2}{q^2} \left[|A_t|^2 + 2\text{Re}(A_0^L A_0^{R^*}) \right] + \beta_\ell^2 |A_S|^2 \,,$$

$$\begin{aligned} J_{2s} &= \frac{\beta_{\ell}^2}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right], \qquad J_{2c} = -\beta_{\ell}^2 \left[|A_0^L|^2 + |A_0^R|^2 \right], \\ J_3 &= \frac{1}{-\beta_{\ell}^2} \left[|A_{\perp}^L|^2 - |A_{\parallel}^L|^2 + |A_{\perp}^R|^2 - |A_{\parallel}^R|^2 \right], \qquad J_4 = \frac{1}{-\varepsilon} \beta_{\ell}^2 \left[\operatorname{Re}(A_0^L A_{\parallel}^{L*} + A_0^R A_{\parallel}^{R*}) \right], \end{aligned}$$

$$J_{5} \quad = \quad \sqrt{2}\beta_{\ell} \left[\operatorname{Re}(A_{0}^{L}A_{\perp}^{L\,*} - A_{0}^{R}A_{\perp}^{R\,*}) - \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}(A_{\parallel}^{L}A_{S}^{*} + A_{\parallel}^{R\,*}A_{S}) \right],$$

$$J_{6s} = 2\beta_{\ell} \left[\operatorname{Re}(A_{\parallel}^{L}A_{\perp}^{L*} - A_{\parallel}^{R}A_{\perp}^{R*}) \right], \qquad \qquad J_{6c} = 4\beta_{\ell} \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}(A_{0}^{L}A_{S}^{*} + A_{0}^{R*}A_{S}) + \frac{$$

$$J_7 \quad = \quad \sqrt{2}\beta_\ell \left[\mathrm{Im}(\mathbf{A}_0^{\mathrm{L}}\mathbf{A}_\parallel^{\mathrm{L}\,*} - \mathbf{A}_0^{\mathrm{R}}\mathbf{A}_\parallel^{\mathrm{R}\,*}) + \frac{\mathbf{m}_\ell}{\sqrt{\mathbf{q}^2}} \,\mathrm{Im}(\mathbf{A}_\perp^{\mathrm{L}}\mathbf{A}_{\mathrm{S}}^* - \mathbf{A}_\perp^{\mathrm{R}\,*}\mathbf{A}_{\mathrm{S}})) \right],$$

$$J_8 = \frac{1}{\sqrt{2}} \beta_\ell^2 \left[\operatorname{Im}(\mathbf{A}_0^{\mathbf{L}} \mathbf{A}_\perp^{\mathbf{L}\;*} + \mathbf{A}_0^{\mathbf{R}} \mathbf{A}_\perp^{\mathbf{R}\;*}) \right] , \qquad \qquad J_9 = \beta_\ell^2 \left[\operatorname{Im}(\mathbf{A}_\parallel^{\mathbf{L}\;*} \mathbf{A}_\perp^{\mathbf{L}} + \mathbf{A}_\parallel^{\mathbf{R}\;*} \mathbf{A}_\perp^{\mathbf{R}}) \right]$$

Link to effective operators

 \Rightarrow So here is where the magic happens. At leading order the amplitudes can be written as:

$$A_{\perp}^{L,R} \quad = \quad \sqrt{2}Nm_B(1-\hat{s}) \Bigg[(\mathcal{C}_9^{\mathrm{eff}} + \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} + \mathcal{C}_7^{\mathrm{eff}}) \Bigg] \xi_{\perp}(E_K^*)$$

$$A_{\parallel}^{L,R} \quad = \quad -\sqrt{2}Nm_B(1-\hat{s})\left[(\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}}(\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}}) \right] \xi_{\perp}(E_K^*)$$

$$A_{0}^{L,R} \quad = \quad -\frac{Nm_{B}(1-\hat{s})^{2}}{2\hat{m}_{K}^{*}\sqrt{\hat{s}}} \left[(\mathcal{C}_{9}^{\mathrm{eff}} - \mathcal{C}_{9}^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_{b}(\mathcal{C}_{7}^{\mathrm{eff}} - \mathcal{C}_{7}^{\mathrm{eff}}) \right] \xi_{\parallel}(E_{K}^{*}),$$

where $\hat{s} = q^2/m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\parallel,\perp}$ are the form factors.

Link to effective operators

 \Rightarrow So here is where the magic happens. At leading order the amplitudes can be written as:

$$A_{\perp}^{L,R} = \sqrt{2} N m_B (1-\hat{s}) \left[(\mathcal{C}_9^{\text{eff}} + \mathcal{C}_9^{\text{eff}'}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2 \hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\text{eff}} + \mathcal{C}_7^{\text{eff}'}) \right] \xi_{\perp} (E_K^*)$$

$$A_{\parallel}^{L,R} \quad = \quad -\sqrt{2}Nm_B(1-\hat{s})\left[(\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}}(\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}}) \right] \xi_{\perp}(E_{K}^*)$$

$$A_{0}^{L,R} \quad = \quad -\frac{Nm_{B}(1-\hat{s})^{2}}{2\hat{m}_{K}^{*}\sqrt{\hat{s}}} \left[(\mathcal{C}_{9}^{\mathrm{eff}} - \mathcal{C}_{9}^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_{b}(\mathcal{C}_{7}^{\mathrm{eff}} - \mathcal{C}_{7}^{\mathrm{eff}}) \right] \xi_{\parallel}(E_{K}^{*}),$$

where $\hat{s} = q^2/m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\parallel,\perp}$ are the form factors. \Rightarrow Now we can construct observables that cancel the ξ form factors at leading order:

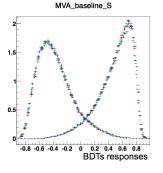
$$P_5' = \frac{J_5 + J_5}{2\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}}$$

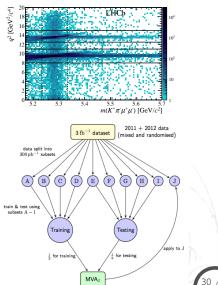
LHCb measurement of $B^0_d \to K^* \mu \mu$

55

Multivariate simulation

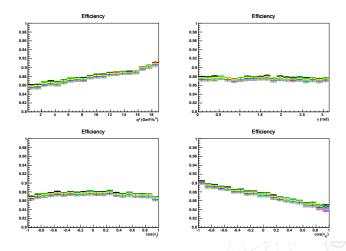
- PID, kinematics and isolation variables used in a Boosted Decision Tree (BDT) to discriminate signal and background.
- BDT with k-Folding technique.
- Completely data driven.





Multivariate simulation, efficiency

 \Rightarrow BDT was also checked in order not to bias our angular distribution:



 \Rightarrow The BDT has small impact on our angular observables. We will correct for these effects later on.

Marcin Chrząszcz (CERN, IFJ PAN)

Anomalies in Physics

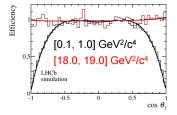
Detector acceptance

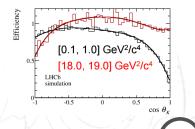
- Detector distorts our angular distribution.
- We need to model this effect.
- 4D function is used:

$$\epsilon(\cos\theta_l,\cos\theta_k,\phi,q^2) = \sum_{ijkl} P_i(\cos\theta_l) P_j(\cos\theta_k) P_k(\phi) P_l(q^2),$$

where P_i is the Legendre polynomial of order i.

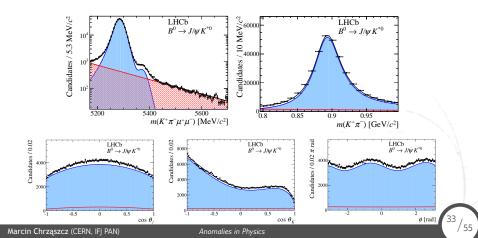
- We use up to $4^{th}, 5^{th}, 6^{th}, 5^{th}$ order for the $\cos \theta_l, \cos \theta_k, \phi, q^2$.
- The coefficients were determined using Method of Moments, with a huge simulation sample.
- The simulation was done assuming a flat phase space and reweighing the q² distribution to make is flat.
- To make this work the *q*² distribution needs to be reweighted to be flat.



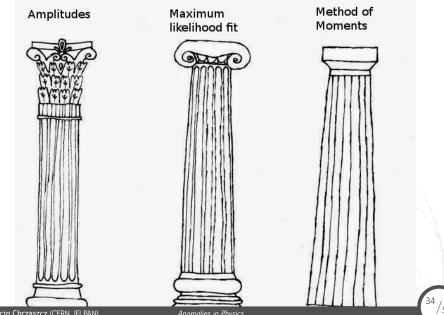


Control channel

- We tested our unfolding procedure on $B \rightarrow J/\psi K^*$.
- The result is in perfect agreement with other experiments and our different analysis of this decay.



The columns of New Physics



Marcin Chrząszcz (CERN, IFJ PAN)

The columns of New Physics

- 1. Maximum likelihood fit:
 - $\circ~$ The most standard way of obtaining the parameters.
 - Suffers from convergence problems, under coverages, etc. in low statistics.
- 2. Method of moments:
 - $\circ~$ Less precise then the likelihood estimator (10-15% larger uncertainties).
 - $\circ~$ Does not suffer from the problems of likelihood fit.
- 3. Amplitude fit:
 - Incorporates all the physical symmetries inside the amplitudes! The most precise estimator.
 - Has theoretical assumptions inside!

Maximum likelihood fit - Results

 \Rightarrow In the maximum likelihood fit one could weight the events accordingly to the $____1$

 $\overline{\varepsilon(\cos\theta_l,\cos\theta_k,\phi,q^2)}$

 \Rightarrow Better alternative is to put the efficiency into the maximum likelihood fit itself:

$$\mathcal{L} = \prod_{i=1}^{N} \epsilon_i(\Omega_i, q_i^2) \mathcal{P}(\Omega_i, q_i^2) / \int \epsilon(\Omega, q^2) \mathcal{P}(\Omega, q^2) d\Omega dq^2$$

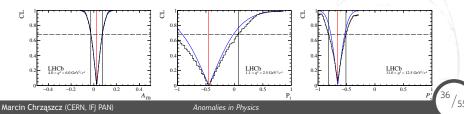
 \Rightarrow Only the relative weights matters!

 \Rightarrow The Procedure was commissioned with TOY MC study.

 \Rightarrow Use Feldmann-Cousins to determine the uncertainties.

 \Rightarrow Angular background component is modelled with $2^{\rm nd}$ order Chebyshev polynomials, which was tested on the side-bands.

 \Rightarrow S-wave component treated as nuisance parameter.



Method of moments

 \Rightarrow See Phys.Rev.D91(2015)114012, F.Beaujean , M.Chrzaszcz, N.Serra, D. van Dyk for details.

 \Rightarrow The idea behind Method of Moments is simple: Use orthogonality of spherical harmonics, $f_j(\overrightarrow{\Omega})$ to solve for coefficients within a q^2 bin:

$$\int f_i(\overrightarrow{\Omega}) f_j(\overrightarrow{\Omega}) = \delta_{ij}$$

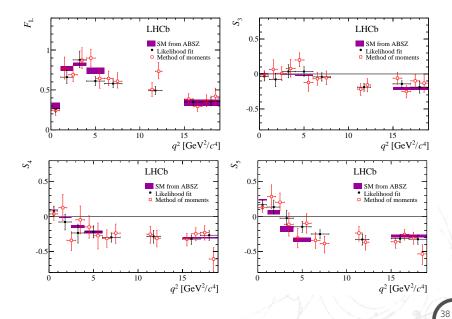
$$M_i = \int \left(\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2}\right) \frac{d^3(\Gamma + \bar{\Gamma})}{d\overrightarrow{\Omega}} f_i(\overrightarrow{\Omega}) d\Omega$$

 \Rightarrow Don't have true angular distribution but we "sample" it with our data. \Rightarrow Therefore: $\int \rightarrow \sum$ and $M_i \rightarrow \widehat{M}_i$

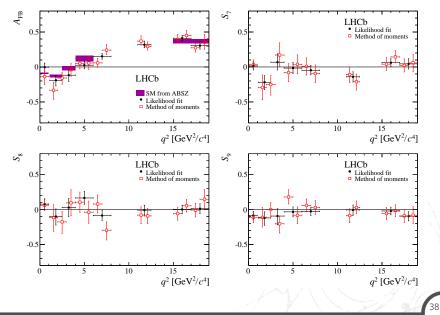
$$\hat{M}_i = \frac{1}{\sum_e \omega_e} \sum_e \omega_e f_i(\overrightarrow{\Omega}_e)$$

 \Rightarrow The weight ω accounts for the efficiency. Again the normalization of weights does not matter.

Method of moments - results



Method of moments - results

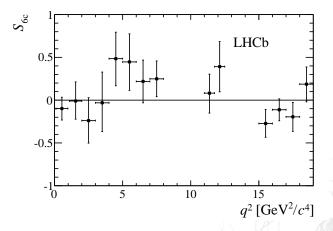


Marcin Chrząszcz (CERN, IFJ PAN)

°/55

Method of moments - results

 \Rightarrow Method of Moments allowed us to measure for the first time a new observable:



Marcin Chrząszcz (CERN, IFJ PAN)

/ 55

Compatibility with SM

⇒ Use EOS software package to test compatibility with SM. ⇒ Perform the χ^2 fit to the measured:

$$F_L, A_{FB}, S_{3,...,9}.$$

⇒ Float a vector coupling: $\Re(C_9)$. ⇒ Best fit is found to be 3.4 σ

 \Rightarrow Best fit is found to be 3.4 away from the SM.

$$\Delta \Re(C_9) \equiv \Re(C_9)^{\text{nt}} - \Re(C_9)^{\text{SM}} = -1.03$$

C .

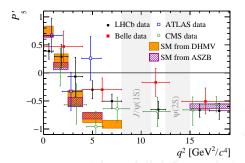
01.0

3

Global picture of P'_5

⇒ 2013 LHCb: arXiv::1308.1707 ⇒ 2015 LHCb: arXiv::1512.0444 \Rightarrow 2016 Belle: arXiv::1604.04042 ⇒ 2017: ATLAS-CONF-2017-023 (20.5 fb^{-1}) and CMS-PAS-BPH-15-008 (20.8 fb^{-1})

 \Rightarrow Theory: DHMV: arXiv::1407.8526 ASZB: arXiv::1411.3161



/ 55

Global fit to $b \rightarrow s\ell\ell$ measurements

Link the observables

 \Rightarrow Fits prepare by S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, arXiv::1510.04239

- Inclusive
- Exclusive leptonic
 - $\circ B_s \to \ell^+ \ell^- (BR) \dots \mathcal{C}_{10}^{(\prime)}$
- Exclusive radiative/semileptonic
 - $\begin{array}{l} \circ \quad B \to K^* \gamma \ (BR, \ S, \ A_I) \dots & \mathcal{C}_7^{(\prime)} \\ \circ \quad B \to K \ell^+ \ell^- \ (dBR/dq^2) \dots & \mathcal{C}_7^{(\prime)}, \ \mathcal{C}_9^{(\prime)}, \ \mathcal{C}_{10}^{(\prime)} \\ \circ \quad \mathbf{B} \to \mathbf{K}^* \ell^+ \ell^- \ (dBR/dq^2, \ \mathbf{Optimized \ Angular \ Obs.}) \dots & \mathcal{C}_7^{(\prime)}, \ \mathcal{C}_9^{(\prime)}, \ \mathcal{C}_{10}^{(\prime)} \\ \circ \quad B_s \to \phi \ell^+ \ell^- \ (dBR/dq^2, \ Angular \ Observables) \dots & \mathcal{C}_7^{(\prime)}, \ \mathcal{C}_9^{(\prime)}, \ \mathcal{C}_{10}^{(\prime)} \\ \circ \ \Lambda_b \to \Lambda \ell^+ \ell^- \ (\text{None so far}) \\ \circ \quad \text{etc.} \end{array}$

Statistic details

 \Rightarrow Frequentist approach:

$$\chi^2(C_i) = [O_{\text{exp}} - O_{\text{th}}(C_i)]_j \, [Cov^{-1}]_{jk} \, [O_{\text{exp}} - O_{\text{th}}(C_i)]_k$$

- $\mathbf{Cov} = \mathbf{Cov}^{exp} + \mathbf{Cov}^{th}$. We have Cov^{exp} for the first time
- Calculate Covth: correlated multigaussian scan over all nuisance parameters
- Cov^{th} depends on C_i : Must check this dependence

For the Fit:

- Minimise $\chi^2 \to \chi^2_{\min} = \chi^2(C_i^0)$ (Best Fit Point = C_i^0)
- Confidence level regions: $\chi^2(C_i) \chi^2_{\min} < \Delta \chi_{\sigma,n}$

 \Rightarrow The results from 1D scans:

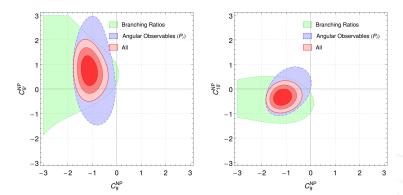
$$\begin{array}{cccc} \text{Coefficient } \mathcal{C}_{i}^{NP} = \mathcal{C}_{i} - \mathcal{C}_{i}^{SM} & \text{Best fit} & 1\sigma & 3\sigma & \text{Pull}_{\text{SM}} \\ \\ \hline & \mathcal{C}_{9}^{\text{NP}} & -1.09 & [-1.29, -0.87] & [-1.67, -0.39] & \textbf{4.5} \Leftarrow \\ \hline & \mathcal{C}_{9}^{\text{NP}} = -\mathcal{C}_{10}^{\text{NP}} & -0.68 & [-0.85, -0.50] & [-1.22, -0.18] & \textbf{4.2} \Leftarrow \\ \hline & \mathcal{C}_{9}^{\text{NP}} = -\mathcal{C}_{9'}^{\text{NP}} & -1.06 & [-1.25, -0.86] & [-1.60, -0.40] & \textbf{4.8} \Leftarrow (\text{no } R_{P}) \xrightarrow{43} \\ \end{array}$$

Marcin Chrząszcz (CERN, IFJ PAN)

/ 55

Theory implications

- The data can be explained by modifying the C_9 Wilson coefficient.
- Overall there is around $4.5 \; \sigma$ discrepancy wrt. SM.

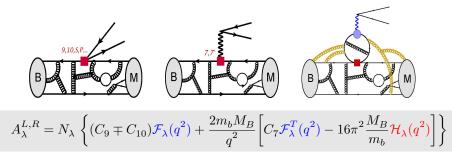


2D scans

Coefficient	Best Fit Point	$Pull_{\mathrm{SM}}$
$(\mathcal{C}_7^{\mathrm{NP}},\mathcal{C}_9^{\mathrm{NP}})$	(-0.00, -1.07)	4.1
$(\mathcal{C}_9^{\mathrm{NP}},\mathcal{C}_{10}^{\mathrm{NP}})$	(-1.08, 0.33)	4.3
$(\mathcal{C}_9^{\mathrm{NP}},\mathcal{C}_{7'}^{\mathrm{NP}})$	(-1.09, 0.02)	4.2
$(\mathcal{C}_9^{\mathrm{NP}},\mathcal{C}_{9^{'}}^{\mathrm{NP}})$	(-1.12, 0.77)	4.5
$(\mathcal{C}_9^{\mathrm{NP}},\mathcal{C}_{10^{'}}^{\mathrm{NP}})$	(-1.17, -0.35)	4.5
$(\mathcal{C}_9^{\mathrm{NP}} = -\mathcal{C}_{9'}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}} = \mathcal{C}_{10'}^{\mathrm{NP}})$	(-1.15, 0.34)	4.7
$(\mathcal{C}_9^{\mathrm{NP}} = -\mathcal{C}_{9'}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}} = -\mathcal{C}_{10'}^{\mathrm{NP}})$	(-1.06, 0.06)	4.4
$(\mathcal{C}_9^{\mathrm{NP}}=\mathcal{C}_{9'}^{\mathrm{NP}},\mathcal{C}_{10}^{\mathrm{NP}}=\mathcal{C}_{10'}^{\mathrm{NP}})$	(-0.64, -0.21)	3.9
$(\mathcal{C}_9^{\mathrm{NP}} = -\mathcal{C}_{10}^{\mathrm{NP}}, \mathcal{C}_{9'}^{\mathrm{NP}} = \mathcal{C}_{10'}^{\mathrm{NP}})$	(-0.72, 0.29)	3.8

- C_9^{NP} always play a dominant role
- All 2D scenarios above 4σ are quite indistinguishable.

$B \to K^* \ell \ell$ Amplitudes



► Local (Form Factors) : $\mathcal{F}_{\lambda}^{(T)}(q^2) = \langle \bar{M}_{\lambda}(k) | \bar{s} \Gamma_{\lambda}^{(T)} b | \bar{B}(k+q) \rangle$

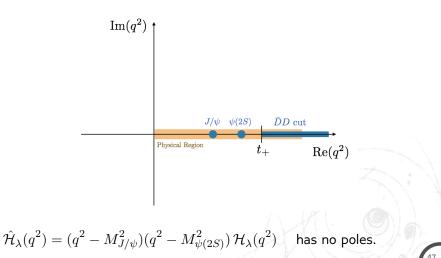
 $\blacktriangleright \text{ Non-Local}: \ \mathcal{H}_{\lambda}(q^2) = i \mathcal{P}_{\mu}^{\lambda} \int d^4x \ e^{iq \cdot x} \langle \bar{M}_{\lambda}(k) | T \{ \mathcal{J}_{\text{em}}^{\mu}(x), \mathcal{C}_i \mathcal{O}(0) \} | \bar{B}(q+k) \rangle$

$$\blacktriangleright \mathsf{CKM} \text{ structure}: \quad \mathcal{H}_{\lambda} = -\frac{\lambda_u}{\lambda_t} \mathcal{H}_{\lambda}^{(u)} - \frac{\lambda_c}{\lambda_t} \mathcal{H}_{\lambda}^{(c)} \qquad \Rightarrow \quad \mathcal{O} \sim (\bar{c}b)(\bar{s}c)$$

Analytic structure of $\mathcal{H}_{\lambda}(q^2)$

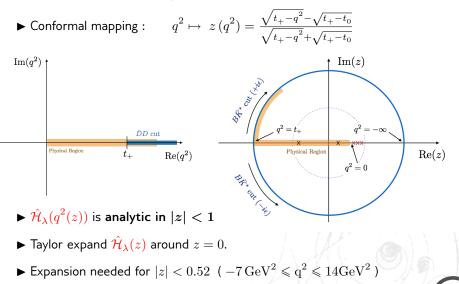
[Bobeth, Chrzaszcz, van Dyk, Virto 1707.07305]

Neglecting OZI- and CKM-suppressed contributions :



Accessing $q^2 > 0$: z expansion

[Bobeth, Chrzaszcz, van Dyk, Virto 1707.07305]



Accessing $q^2 > 0$: z expansion

[Bobeth, Chrzaszcz, van Dyk, Virto 1707.07305]

Some details for actual parametrisation :

- ► Try to capture most features of the expansion (better convergence)
- ▶ Parametrize the ratios $\mathcal{H}_{\lambda}(q^2)/\mathcal{F}_{\lambda}(q^2)$ instead
- \blacktriangleright The poles should not modify the asymptotic behaviour at $|q^2|
 ightarrow \infty$

$$\begin{aligned} \mathcal{H}_{\lambda}(z) &= \frac{1 - z \, z_{J/\psi}^*}{z - z_{J/\psi}} \frac{1 - z \, z_{\psi(2S)}^*}{z - z_{\psi(2S)}} \, \hat{\mathcal{H}}_{\lambda}(z) \\ \hat{\mathcal{H}}_{\lambda}(z) &= \Big[\sum_{k=0}^{K} \alpha_k^{(\lambda)} z^k \Big] \mathcal{F}_{\lambda}(z) \end{aligned}$$

where $\alpha_k^{(\lambda)}$ are complex coefficients, and the expansion is truncated after the term z^K . We will take K = 2 (16 real parameters).

Experimental constraints on z parametrisation

[Bobeth, Chrzaszcz, van Dyk, Virto 1707.07305]

Experimental constraints :

▶ The residues of the poles are given by $B \to K^* \psi_n$:

$$\mathcal{H}_{\lambda}(q^2 \to M_{\psi_n}^2) \sim \frac{M_{\psi_n} f_{\psi_n}^* \mathcal{A}_{\lambda}^{\psi_n}}{M_B^2(q^2 - M_{\psi_n}^2)} + \cdots$$

► Angular analyses [Belle, Babar, LHCb] determine :

$$\begin{split} |r_{\perp}^{\psi_n}|, \, |r_{\parallel}^{\psi_n}|, \, |r_0^{\psi_n}|, \, \arg\{r_{\perp}^{\psi_n}r_0^{\psi_n*}\}, \, \arg\{r_{\parallel}^{\psi_n}r_0^{\psi_n*}\}, \\ \text{where} \quad r_{\lambda}^{\psi_n} \equiv \underset{q^2 \to M_{\psi_n}^2}{\operatorname{Res}} \frac{\mathcal{H}_{\lambda}(q^2)}{\mathcal{F}_{\lambda}(q^2)} \sim \frac{M_{\psi_n}f_{\psi_n}^*\mathcal{A}_{\lambda}^{\psi_n}}{M_B^2 \, \mathcal{F}_{\lambda}(M_{\psi_n}^2)} \end{split}$$

▶ We produce correlated pseudo-observables from a fit (5+5).

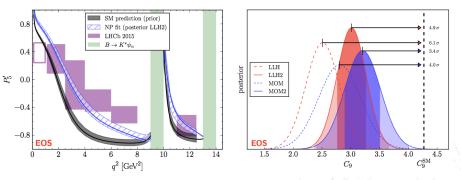
(Prior) Fit to Experimental and theoretical pseudo-observables :

k	0	1	2
$\overline{\operatorname{Re}[\alpha_k^{(\perp)}]}$	-0.06 ± 0.21	-6.77 ± 0.27	18.96 ± 0.59
$\operatorname{Re}[\alpha_k^{(\parallel)}]$	-0.35 ± 0.62	-3.13 ± 0.41	12.20 ± 1.34
$\operatorname{Re}[\alpha_k^{(0)}]$	0.05 ± 1.52	17.26 ± 1.64	-
$\operatorname{Im}[\alpha_k^{(\perp)}]$	-0.21 ± 2.25	1.17 ± 3.58	-0.08 ± 2.24
$\operatorname{Im}[\alpha_k^{(\parallel)}]$	-0.04 ± 3.67	-2.14 ± 2.46	6.03 ± 2.50
$\mathrm{Im}[\alpha_k^{(0)}]$	-0.05 ± 4.99	4.29 ± 3.14	-

Table: Mean values and standard deviations (in units of 10^{-4}) of the prior PDF for the parameters $\alpha_k^{(\lambda)}$.

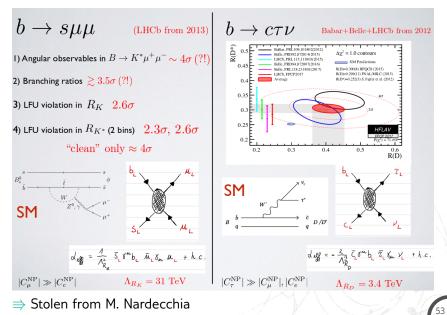
New Physics Analysis

SM predictions and Fit including $B o K^* \mu^+ \mu^-$ data and $\mathcal{C}_9^{\mathrm{NP}}$:



The NP hypothesis with $\mathcal{C}_9^{\mathbf{NP}}\sim -1$ is favored strongly in the global fit

Scale of NP?



Marcin Chrząszcz (CERN, IFJ PAN)

Anomalies in Physics

/ 55

Conclusions

- Clear tensions wrt. SM predictions!
- Measurements cluster in the same direction.
- We are not opening the champagne yet!
- Still need improvement both on theory and experimental side.
- Time will tell if this is QCD+fluctuations or new Physics:

Conclusions

- Clear tensions wrt. SM predictions!
- Measurements cluster in the same direction.
- We are not opening the champagne yet!
- Still need improvement both on theory and experimental side.
- Time will tell if this is QCD+fluctuations or new Physics:

"... when you have eliminated all the Standard Model explanations, whatever remains, however improbable, must be New Physics." prof. Joaquim Matias

Thank you for the attention!



Backup

⁵⁶/₅₅

Amplitudes method

⇒ Fit for amplitudes as (continuous) functions of q^2 in the region: $q^2 \in [1.1.6.0] \text{ GeV}^2/\text{c}^4$. ⇒ Needs some Ansatz:

$$A(q^2) = \alpha + \beta q^2 + \frac{\gamma}{q^2}$$

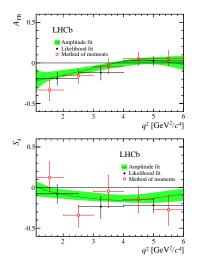
\Rightarrow The assumption is tested extensively with toys.

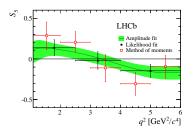
 \Rightarrow Set of 3 complex parameters α, β, γ per vector amplitude:

- $L, R, 0, \parallel, \perp, \Re, \Im \rightarrow 3 \times 2 \times 3 \times 2 = 36$ DoF.
- Scalar amplitudes: +4 DoF.
- Symmetries of the amplitudes reduces the total budget to: 28.
- \Rightarrow The technique is described in JHEP06(2015)084.
- \Rightarrow Allows to build the observables as continuous functions of q^2 :
- At current point the method is limited by statistics.
- In the future the power of this method will increase.

 \Rightarrow Allows to measure the zero-crossing points for free and with smaller errors than previous methods.

Amplitudes - results





Zero crossing points:

$q_0(S_4) < 2.65$	at 95% CL
$q_0(S_5) \in [2.49, 3.95]$	at $68\% \; CL$
$q_0(A_{FB}) \in [3.40, 4.87]$	at $68\%\ CL$

58