B^0 $K^*\mu^-\mu$ selection update

Marcin Chrząszcz **Małgorzata** Pikies

University of Zurich^{uzh}

LUV meeting, CERN 12 January 2016

Selection requirements

- Used good old Stripping line: B2XMuMu_Line (S21).
- In additional to stripping cuts $DLL_K > 1$ applied.
- Trigger used:

LODiMuonDecision, LOMuonDecision

Hlt1TrackMuonDecision, Hlt1TrackAllLODecision

Hlt2Topo(2,3)BodyBBDTDecision,

Hlt2TopoMu(2,3)BodyBBDTDecision, Hlt2DiMuonDecision

- All lines in TOS.
- Selection follows previous $B \rightarrow K \mu \mu$ analysis.

MVA training

- Used the standard k-Folding technique with 10 folds.
- As always randomized the folds etc.
- As signal proxy used the Splot $B^+ \to K^+ J/\psi$.
- Mass modelled with double CB and single exponent.

The fitted parameters in agreement with previous analysis.

BDT

- Used the standard k-Folding technique with 10 folds.
- Variables used in the training:

```
K Kst IPCHI2 OWNPV
B_plus_ENDVERTEX_CHI2
e_minus_IPCHI2_OWNPV
e_plus_IPCHI2_OWNPV
J_psi_1S_IPCHI2_OWNPV
      B_plus_PT
 B_plus_IPCHI2_OWNPV
  B_plus_FD_OWNPV
  B_plus_DiraAngle
      B plus P
       K_Kst_P
```

- Used the standard k-Folding technique with 10 folds.
- Variables used in the training:
- Standard BDT training no optimisation:

• All folds are in very good agreement!

- Used the standard k-Folding technique with 10 folds.
- Variables used in the training:
- Standard BDT training optimisation (optimized on area under the ROC curve):

• 2 folds are different, but this is only the artefact of the BDT.

BDT

- Used the standard k-Folding technique with 10 folds.
- Variables used in the training:
- Standard BDT training optimisation (optimized on area under the ROC curve):

• Again the artefact of the optimisation.

Performance comparison

• Now let's compare the gain on optimizing the parameters of the BDT.

Clearly the PID and optimisation helps in the MVA!

To do

- Fix the artefacts in of the DBT training for the optimised observables.
- Days before Xmas Danny added the utility to EOS to generate events, so I plan to produce toy MC that can be used for studies and later on for systematics.
- Start looking at the acceptance correction:
 - $\circ~$ Cross check that all variables are modeled well in MC(should be as they have been ok for $B\to K^*\mu\mu$).
 - From Kaggle contests there was an idea to use a BDT driven method to unfold the distributions.
 - Will also cross check the normal moments method of unfolding.

Backup