$egin{aligned} B^0 ightarrow K^* \mu^- \mu^+ \ ext{MC Filter} \end{aligned}$

Marcin Chrząszcz mchrzasz@cern.ch Thomas Blake Nicola Serra

 $B^0 o K^* \mu^- \mu^+$ meeting, CERN October 9, 2016

A glimpse in the Run1 analysis

- \Rightarrow In the Run1 we have asked for a filtered MC to correct for detector acceptance.
- \Rightarrow Asked for 5.5M events (after stripping in DST), which means we generated around 110M events.
- \Rightarrow After our full selection we ended up with with only 1.4M events.

Warning!

The stripping line has a PID cut inside: $PID_{\mu} > -3$.

This essentially means we model that efficiency from MC.

Run2 options

- 1. Repeat what we did in Run1 and keep the PID cuts.
- 2. Filter on stripping removing the PID cut.
- 3. Filter on MC truth:
 - \circ 4 charge tracks on StdAllNoPiDPions/Kaons/Muons
 - \circ And truth matched the decay channel: mcMatch('[B0=>K*(892)0mu+mu-]CC')

Why MCTruth?

- ⇒ We are using a very old stripping line that for sure can be (and should be) optimized for the final analysis of Run2!
- ⇒ Producing an MCTRUTH match sample would allow the sample to be reused for future analysis even if the stripping line will change!

Retentions

- ⇒ To study the solution I have used 2012 Physics MC.
- ⇒ I have taken 17.250 simulated events.
- ⇒ Here is the results:

Туре	Filter retention	Events in the ntuple	Truth Matched
Strip	3447 (20 %)	4975	1648
Strip no PID_{μ}	3504 (20.3 %)	5176	1660
MCTruth	5009 (29 %)	4456	1660

- ⇒ Now I have cross check this running the same algorithms on stripped and non stripped MC always getting the same numbers.
- \Rightarrow For speed purpose I have put a cut on the $m_{K^*} < 1300~{
 m MeV}$ (can be adjusted if needed).
- ⇒ Other option to consider is to remove ISMUON form stripping to get all efficiencies from PIDCalib.

Plans

- \Rightarrow With Tom we feel that it would be best to ask for 200M generated events.
- \Rightarrow Also we noticed that we have 50M events of some old MC10 (Stripping 12) MC, which we propose to delete.
- \Rightarrow For PPG: The $R(D^{\ast})$ have already got green light for more then 1000M generated events, so we getting the 200M should not be a problem.
- \Rightarrow To discuss: Do we want a flat $m(K\pi)$ sample or we can keep the K^* ?

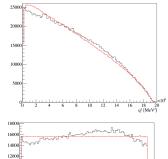
Plans 2

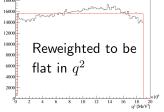
 \Rightarrow Besides the normal $B\to K^*\mu\mu$ PHSP we should ask for other MC channels.

 \Rightarrow I proposed to scale the old numbers by factor: $\frac{5}{3}$.

Decay	DecFile event type	N. of events	N. of events Run2
$B \to K^*J/\psi$ (physics)	11144001	2M	3.5M
$B o K^* J/\psi$ (PHSP?)	xxxxxxx	0	3.5M
$B o K^* \mu \mu$ (physics)	11114001	1M	1.5M
$\Lambda_b \to \Lambda(1530)\mu\mu$	15114000	1M	1.5M
$\Lambda_b \to p K \mu \mu$	15114011	2M	3.5M
$B_s^0 \to \phi \mu \mu$	13114002	0.6M	1M
$B_u \to K \mu \mu$	12113001	1M	1.5M

⇒ This would be unfiltered production and this MC will be needed for other analysis as well.


- \Rightarrow Do we want to simulate a flat q^2 in the $B \to K^* \mu \mu$?
- \Rightarrow Do we want to have a flat $K\pi$ mass distribution in the simulation?

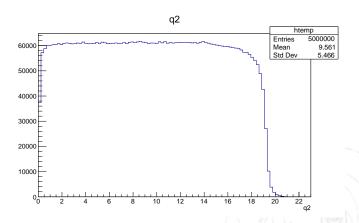

MC model

Acceptance correction

- \Rightarrow The decay of $B^0 \to K^*\mu^-\mu^+$ is described by 3 helicity angles and the invariant mass squared of two leptons (q^2) .
- ⇒ In order to model the detector acceptance we have used a large MC sample of PHSP simulated events.
- \Rightarrow There is a caveat: the q^2 distribution.
- \Rightarrow We had to reweight it to make it flat.

Can we optimize it?

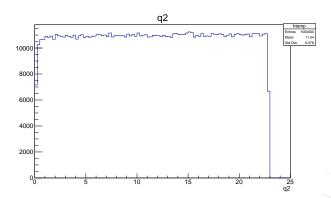
- \Rightarrow It would be nice if we could generate not only the flat angle distributions but also a flat q^2 .
- ⇒ There exists already a model for it: FLATQ2.
- \Rightarrow It basically reweighs the distribution by $1/p_T^{
 m had}$.
- \Rightarrow The problem is that it was design to generate the flat distribution of decays $B\to X\ell\nu$:


```
void EvtFlatQ2::init(){
    // check that there are 0 arguments
    checkNArg(0);
    checkNDaug(3);

    //We expect B->X l nu events
    checkSpinParent(EvtSpinType::SCALAR);
    checkSpinDaughter(1,EvtSpinType::DIRAC);
    checkSpinDaughter(2,EvtSpinType::NEUTRINO);
}
```

 \Rightarrow Will not work in current version for $B \to K^* \mu \mu$.

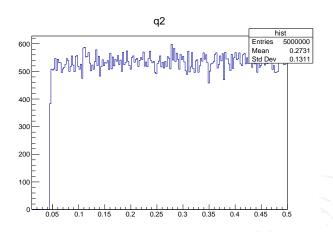
Modifying the FLATQ2 1


- ⇒ I wrote a mirror model that requires that the two leptons are DIRAC, and called it FLATQ2EWP.
- ⇒ And improves the situation a lot:

- \Rightarrow So much flatter but the and and the begging still not flat.
- \Rightarrow End of the spectrum is due to K^* width? wo Lets test it with B -

Modifying the FLATQ2 1

 \Rightarrow FLATQ2EWP use to simulate the $B \rightarrow K\mu\mu$:



- ⇒ Oki so end of the spectrum is understood and not much can be done there.
- \Rightarrow Now the low q^2 : Can this be just Phase space suppression: $\sqrt{\lambda} = \sqrt{1 4m_e^2/q^2}$

 $B^0 o K^*\mu^-\mu^+$ MC Filter

Modifying the FLATQ2 2

⇒ FLATQ2EWP with phase space suppression factor.

 \Rightarrow Now it's perfect.

Update since last week

- ⇒ Discussion was made via: JIRA
- \Rightarrow It was suggested my Michal to incorporate the new model into the current one to save the code.
- ⇒ Thanks to John for merging the two codes:

```
void EvtFlatO2::init(){
 // check that there are 3 daughters
 checkNDaug(3);
 // We expect B -> X lepton lepton events
 checkSpinParent(EvtSpinTvpe::SCALAR):
 EvtSpinType::spintype d1type = EvtPDL::getSpinType(getDaug(1));
 EvtSpinType::spintype d2type = EvtPDL::getSpinType(getDaug(2));
 if (!(d1type == EytSpinType::DIRAC || d1type == EytSpinType::NEUTRINO)) {
     EvtGenReport(EVTGEN ERROR, "EvtGen") << "EvtFlatO2 expects 2nd daughter to "
                                           << "be a lepton" <<std::endl:
     EvtGenReport(EVTGEN ERROR."EvtGen") << "Will terminate execution!"<<std::endl:</pre>
     ::abort():
 if (!(d2type == EvtSpinType::DIRAC || d2type == EvtSpinType::NEUTRINO)) {
     EvtGenReport(EVTGEN ERROR, "EvtGen") << "EvtFlatO2 expects 3rd daughter to "
                                           << "be a lepton" <<std::endl:
     EvtGenReport(EVTGEN ERROR."EvtGen") << "Will terminate execution!"<<std::endl:</pre>
     ::abort():
 // Specify if we want to use the phase space factor
 usePhsp = false;
 if (getNArg() > 0) {
     if (getArg(0) != 0) { usePhsp = true;}
 EvtGenReport(EVTGEN INFO, "EvtGen") <<"EvtFlat02 usePhsp = "<<int( usePhsp)<<std::endl;</pre>
```

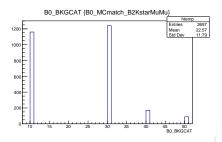
Update since last week

- ⇒ Discussion was made via: JIRA
- \Rightarrow It was suggested my Michal to incorporate the new model into the current one to save the code.
- ⇒ Thanks to John for merging the two codes:

```
void EvtFlat02::decay( EvtParticle *p){
  p->initializePhaseSpace(getNDaug().getDaugs()):
  EvtVector4R p4Xu = p->getDaug(0)->getP4():
  EvtVector4R p4ell1 = p->getDaug(1)->getP4();
  EvtVector4R p4ell2 = p->getDaug(2)->getP4():
  double pXu x2 = p4Xu.get(1)*p4Xu.get(1):
  double pXu_y2 = p4Xu.get(2)*p4Xu.get(2);
  double pXu z2 = p4Xu.get(3)*p4Xu.get(3);
  double pXu = sqrt(pXu x2+pXu y2+pXu z2);
  double prob(0.0):
  if (fabs(pXu) > 0.0) {prob = 1/pXu;}
  // Include the phase space factor if requested
  if ( usePhsp) {
    double Lambda = lambda((p4ell1+p4ell2).mass(), p4ell1.mass());
   if (Lambda > 0.0) {prob=prob/sqrt(Lambda):}
  if (pXu > 0.01) {setProb(prob);}
```

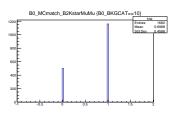
FLATQ2 Conclusion

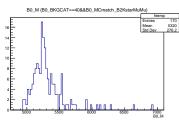
- ⇒ The new model was tested by me and John.
- \Rightarrow Changes won't have any influence on the existing DEFILES as the flag is by default switched off.
- ⇒ The commit was merge to master by Gloria today.
- ⇒ We thank all people involved action
- ⇒ The whole things took <week and is already available for production!
- \Rightarrow There is also other model XLL, see Biplab slides more suitable for $B \to K\pi\mu\mu$.

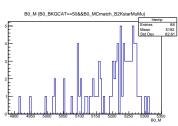

Backup

This is not related to MC requests.

MCmatching studies.


 \Rightarrow Let's look how the candidates that have been matched by: mcMatch('[B0 => K*(892)0mu + mu -]CC') look like:


- ⇒ BKGCAT==10 is the pure signal. The mcMatch is not changing anything in that number of entries.
- \Rightarrow BKGCAT==30 is the K= $K\leftrightarrows\pi$ swaps. This goes away with some PID selection


MCmatching studies.

⇒ Now all BKGCAT==10 have true mcMatch:

⇒ How does BKKCAT==50,40 (missID +FSR, FSR)look like:

 \Rightarrow We need to consider which <code>BKGCAT</code> we should use for the analysis