# Quo Vadis P'5 ?

#### Marcin Chrzaszcz mchrzasz@cern.ch



on behalf of the  ${
m B} 
ightarrow {
m K}^* \mu \mu$  team

Analysis and software week, CERN April 28, 2017

#### The road (towards NP ?)

 $\Rightarrow$  Several theory authors proposed to measure a "clean" observable:

$$\mathbf{P}_5' = \frac{S_5}{F_L(1 - F_L)}$$

 $\Rightarrow$  At leading order of  $\alpha_s$  and  $m_b$ expansion the form factor cancel arxiv::1207.2753

What we were promised:

#### The road (towards NP ?)

 $\Rightarrow$  Several theory authors proposed to measure a "clean" observable:

$$\mathbf{P}_5' = \frac{S_5}{F_L(1 - F_L)}$$

 $\Rightarrow$  At leading order of  $\alpha_s$  and  $m_b$  expansion the form factor cancel arxiv::1207.2753





What we were promised:



#### The road (towards NP ?)

 $\Rightarrow$  Several theory authors proposed to measure a "clean" observable:

$$\mathbf{P}_5' = \frac{S_5}{F_L(1 - F_L)}$$

⇒ At leading order of  $\alpha_s$  and  $m_b$ expansion the form factor cancel arxiv::1207.2753





What we were promised:



What we got:



Quo Vadis  $P_5'$  ?

The history of  $P'_5$ 

⇒ 2013 LHCb: arXiv::1308.1707



## The history of $P'_5$

#### $\Rightarrow$ Theory: DHMV: arXiv::1407.8526 ASZB: arXiv::1411.3161

⇒ 2013 LHCb: arXiv::1308.1707 ⇒ 2015 LHCb: arXiv::1512.0444



# The history of $P_5'$

⇒ 2013 LHCb:
 arXiv::1308.1707
 ⇒ 2015 LHCb:
 arXiv::1512.0444



We generated a lot of interests :) The paper has now 115 citations!
 Two alliances were formed:

#### ⇒ We have new physics:



#### $\Rightarrow$ We have QCD effects:



# The history of $P'_5$

 $\Rightarrow$  Theory: DHMV: arXiv::1407.8526 ASZB: arXiv::1411.3161

 ⇒ 2013 LHCb: arXiv::1308.1707
 ⇒ 2015 LHCb: arXiv::1512.0444
 ⇒ 2016 Belle: arXiv::1604.04042



## The history of $P'_5$

 ⇒ 2013 LHCb: arXiv::1308.1707
 ⇒ 2015 LHCb: arXiv::1512.0444
 ⇒ 2016 Belle: arXiv::1604.04042
 ⇒ 2017: ATLAS-CONF-2017-023 and CMS-PAS-BPH-15-008

#### $\Rightarrow$ Theory: DHMV: arXiv::1407.8526 ASZB: arXiv::1411.3161



/ 12

## Details about their ATLAS & CMS analysis 1/2

- $\Rightarrow$  The results are based on Run1 data.
- $\Rightarrow$  The measurement of  $P'_5$  is possible knowing the B flavour.
- $\Rightarrow$  In LHCb we have RICH, but ATLAS and CMS don't, so the flavour is assigned by checking two possible mass hypothesis for  $K^*$  and choosing the one closer to the SM value (13% for CMS and 11% for CMS).
- $\Rightarrow$  The analysis follows our LHCb results from 1 fb<sup>-1</sup>:
- Not enough events to perform the full angular fit.
- Fold the angles to reduce the number of observables
- In this procedure you lose correlations between the observables
- $\Rightarrow$  The acceptance corrections both in CMS and ATLAS paramterized as  $\epsilon(\cos\theta_l,\cos\theta_k,\phi,m)$  in each of the  $q^2$  bin.

## Details about their ATLAS & CMS analysis 2/2



 $\Rightarrow$  Angular acceptance parametrized by polynomial functions.

⇒ Determination of  $F_L$ ,  $P_1$ ,  $P'_4$ ,  $P'_5$ ,  $P'_6$ ,  $P'_8$  and/or  $S_i$  i = 3, 4, 5, 7, 8.

 $\Rightarrow$  Systematic for S-wave (small)

 $\Rightarrow$  Main systematics: background: charm, partRECO, fake  $K^*$ .

 $\Rrightarrow B \to \mathrm{K}^* \mathrm{J} / \psi$  used ONLY for mass PDF.



- $\Rightarrow$  Angular acceptance parametrized
- by KDE and sampled histograms.
- $\Rightarrow$  Determination of only  $P_1$  and  $P'_5$ .
- $\Rightarrow$  Swave fraction inferred from other analysis.
- $\Rightarrow$  Main systematics: Control channel differences.
- $\Rightarrow B \rightarrow K^* J/\psi$  used for systematics.

#### $\Rightarrow$ LHCb (3 fb<sup>-1</sup>):

| Coefficient                                   | Best Fit | $Pull_{\mathrm{SM}}$ |
|-----------------------------------------------|----------|----------------------|
| $C_9$                                         | -1.09    | 4.5                  |
| $C_9 = -C_{10}$                               | -0.68    | 4.2                  |
| $C_9 = -C'_9$                                 | -1.06    | 4.8                  |
| $C_9=-C_{10}$ and $C_9^\prime=-C_{10}^\prime$ | -0.69    | 4.1                  |

/ 12

## $\Rightarrow$ LHCb (3 fb<sup>-1</sup>) + Belle:

| Coefficient                                   | Best Fit | $Pull_{\mathrm{SM}}$ |
|-----------------------------------------------|----------|----------------------|
| $C_9$                                         | -1.12    | 5.0 (!!!)            |
| $C_9 = -C_{10}$                               | -0.61    | 4.4                  |
| $C_9 = -C'_9$                                 | -1.05    | 4.5                  |
| $C_9=-C_{10}$ and $C_9^\prime=-C_{10}^\prime$ | -0.66    | 4.6                  |

 $\Rightarrow$  LHCb (3 fb<sup>-1</sup>) + Belle + ATLAS:

| Coefficient                                   | Best Fit | $Pull_{\mathrm{SM}}$ |
|-----------------------------------------------|----------|----------------------|
| $C_9$                                         | -1.14    | 5.2 (!!!)            |
| $C_9 = -C_{10}$                               | -0.60    | 4.4                  |
| $C_9 = -C'_9$                                 | -1.08    | 4.9                  |
| $C_9=-C_{10}$ and $C_9^\prime=-C_{10}^\prime$ | -0.67    | 4.6                  |

 $\Rightarrow$  LHCb (3 fb<sup>-1</sup>) + Belle + ATLAS + CMS:

| Coefficient                                   | Best Fit | $Pull_{\mathrm{SM}}$ |
|-----------------------------------------------|----------|----------------------|
| $C_9$                                         | -1.07    | 4.9                  |
| $C_{9} = -C_{10}$                             | -0.58    | 4.3                  |
| $C_9 = -C'_9$                                 | -1.01    | 4.6                  |
| $C_9=-C_{10}$ and $C_9^\prime=-C_{10}^\prime$ | -0.61    | 4.3                  |



M.Chrzaszcz (UZH)

So what is the significance? D. Straub, et. al. [1703.09189]

 $\Rightarrow$  LHCb (3 fb<sup>-1</sup>) + CDF + ATLAS + CMS:



 $\Rightarrow$  Both groups came to the similar conclusion!

Quo Vadis  $P_5^\prime$  ?

/ 12

# Quo Vadis $P'_5$ ? Status Quo $P'_5$ !



#### Comments about the CMS result 1/3

 $\Rightarrow$  Both ATLAS and CMS use our folding technique that was used in 1 fb<sup>-1</sup> analysis.  $\Rightarrow$ CMS when performing the angular fit fixes the  $F_L$ ,  $F_S$ and  $A_s$  from the previous analysis on the same data!  $\Rightarrow$  They claim that they check with TOYMC it is correct. However some doubts remain. ⇒ Feldman-Cousin procedure can underestimate the errors in this case.

⇒ More details on toy validation and or bootstrapping the data would be nice!



#### Comments about the CMS result 2/3

 $\Rightarrow$  There seems to be a structure in the  $\cos \theta_l$  distribution.

 $\Rightarrow$  A.Bevan suggested this might be due to existence of a  $B \rightarrow D(K\pi\pi)\pi$ 

 $\Rightarrow$  Can be easily checked with MC.



#### Comments about the CMS result 3/3

⇒ In the decay of  $B \to K^* J/\psi$  they fail to reproduce the value of  $F_L$ . ⇒ They assign the difference as a systematic uncertainty. ⇒ There is no guaranty that this has no  $q^2$  dependence. ⇒ They tag the  $K^*$  via which of the configurations:  $K^+\pi^-$ ,  $K^-\pi^+$  is closer to nominal  $K^*$ mass.

 $\Rightarrow$  They model the miss-tag fractions from MC.

⇒ The mistag is modelled by MC. Systematic assign from  $B \rightarrow K^*J/\psi$  (no  $q^2$ dependence assumed).



### Conclusion

- $\Rightarrow$  The anomaly is alive and well!
- $\Rightarrow$  New results overall increase the significance.
- $\Rightarrow$  Tension with SM seen in  $P_5'$  by Atlas, Belle and LHCb. CMS result in good agreement with SM, but consistent with our results.
- $\Rightarrow$  Some discussion on aspects of the CMS analysis ongoing.
- $\Rightarrow$  Run2 data will shade definite light if the anomaly is there or not (of course the nature of the anomaly is different question).

# Backup



<sup>13</sup>/<sub>12</sub>