$\rightarrow \mu\mu\mu$ in LHCb

Marcin Chrząszcz mchrzasz@cern.ch

University of Zurich^{vz}

Kaggle Seminar, San Francisco August 21, 2015

Reminder: The Large Hadron Collider

1 TeV = 1 Tera electron volt = 10¹² electron volt

Primary physics targets

- Origin of mass
- Nature of Dark Matter
- Understanding space time

/27

- Matter versus antimatter
- Primordial plasma

The LHC is a Discovery Machine The LHC will determine the Future course of High Energy Physics

Marcin Chrząszcz (Universität Zürich)

 $au
ightarrow \mu \mu \mu$ in LHCb

LHC did very well 2011: luminosity 3.5 . 10^{33} cm⁻² s⁻¹ \Rightarrow >5 fb⁻¹ collected in total 2012: luminosity 7.6 . 10^{33} cm⁻² s⁻¹ \Rightarrow >20 fb⁻¹ collected in total Next pp collisions in 2015. Shutdown for 'energy upgrade'

Marcin Chrząszcz (Universität Zürich)

 $\tau \rightarrow \mu \mu \mu$ in LHCb

Experiments at the LHC

Marcin Chrząszcz (Universität Zürich)

 $au
ightarrow \mu \mu \mu$ in LHCl

The Higgs Hunters @ the LHC

Marcin Chrząszcz (Universität Zürich)

 $\tau \rightarrow \mu \mu \mu$ in LHCb

Schematic of a LHC Detector

Physics requirements drive the design!

Analogy with a cylindrical onion:

Technologically advanced detectors comprising many layers, each designed to perform a specific task.

Together these layers allow us to identify and precisely measure the energies and directions of all the particles produced in collisions.

Such an experiment has ~ 100 Million read-out channels!!

The experiments are in good shape!

Marcin Chrzaszcz (Universität Zürich)

Data Taking Challenges

- Collider: 20M bunch crossings per second
- ~ 30 events per bunch crossing: pile-up
- Trigger on 400 events/sec (+ another 400-600 Hz of parked data in CMS): keep the interesting (incl. unknown) physics
- Total data volume in eg ATLAS: 5 billion detector events, 120 PB of data (simulation and data). Several billion Monte Carlo events (produce ~ 10⁹ events/2 months)
- ATLAS+CMS > 500 papers so far > ~600 papers for all experiments
 No attempt to cover everything © but
 examples to illustrate the LHC
 Most examples from CMS/ATLAS

Monte Carlos are very important

For our daily work...

- •Guidance on the background to the signal (direct or training)
- Signal acceptance
- Systematic error evaluation
- Comparison with theory
- Parton shower mechanisms
 - Pythia6, Pythia8, Herwig6, Herwig++
 - Sherpa with its own shower and multi-leg matching.

- ThePEG (Herwig++, Ariadne), Phantom, Hydjet, Pyquen, Cosmic generators, ExHuME, Pomwig, BcGenerator, HARDCOL, PHOJET, Regge-Gribov generators, CASCADE, etc.

- Matrix element generators
 - LO: Madgraph, Alpgen, Sherpa
 - NLO: aMC@NLO, SherpaNLO, Powheg, MiNLO + Powheg, etc.
- Decay Tools

- Tauola, Tauola++, EvtGen, Photos, Madspin (to be integrated) etc.

+ specific NP signal MCs (via LHE files), cross section calculators MCFM, FEWZ, ...etc...

Experimentalists always want more, better (HO), faster, well tuned MC.

 $\tau \rightarrow \mu \mu \mu$ in LHCb

Examples from CMS embedded in the exp. software

Overall view of the LHC experiments.

Marcin Chrząszcz (Universität Zürich)

optimization for B-Physics – but can do much more

- I forward angular coverage → large boosts: B decay lengths O(1 cm)
- focus on vertex reconstruction and particle identification
- \blacksquare phase space coverage down to low $p_{T},$ small x_{Bj} and large η
- flexible and highly selective trigger

 $^{13}/_{27}$

ca. 50 kB/event

- → allow selection of rare processes
- Level-0 Trigger: hardware
 - ➔ fully synchronous at 40 MHz
 - ➔ use calorimeters and muon system
 - → selection of high- p_T particles
 - $p_T(\mu) > O(1) \operatorname{GeV}/c$
 - $p_T(h, e, \gamma) > O(3) \operatorname{GeV}/c$
- High-Level Trigger: software
 - → HLT1: add VELO information
 - impact parameter- and lifetime cuts
 - → HLT2: global event reconstruction
- exclusive & inclusive selections
 up to O(30) kHz "deferred" triggering

/ 27

Lepton Flavour/Number Violation

```
Lepton Flavour Violation(LFV):
```

After μ^- was discovered (1936) it was natural to think of it as an excited e^- .

- Expected: $B(\mu \rightarrow e\gamma) \approx 10^{-4}$
- Unless there is a nother ν .

$\begin{array}{ccc} \mu & & & \\ \hline \nu_{\mu} & & & \\ e & & \\ e & & \\ \end{array} \begin{array}{c} \nu_{\mu} & & \\ \nu_{\mu} & & \\ \hline \nu_$

I.I.Rabi:

"Who ordered that?"

- **R**
- Up to this day charged LFV is being searched for in various decay modes.
- LFV was already found in neutrino sector (oscillations).
- Lepton Number Violation (LNV)
- Even with LFV, lepton number can be a conserved quantity.
- Many NP models predict LNV (Majorana neutrinos)
- LNV searched in s-called neutrinoless double β decays.

Status of searches for

- Charged Lepton Flavour Violation process.
- The Standard Model contribution: penguin diagram with neutrino oscillation

Current limits (90 % CL) BaBar 3.3×10^{-8} Belle 2.1×10^{-8}

Predictions

SM $O(10^{-40})$ var. SUSY 10^{-10} non universal Z' 10^{-8} mSUGRA+seesaw 10^{-9} and many more

τ production

• τ 's in LHCb come from five main sources:

Mode	$7 { m TeV}$	$8 { m TeV}$
Prompt $D_s ightarrow au$	$71.1 \pm 3.0\%$	$72.4 \pm 2.7\%$
Prompt $D^+ \to \tau$	$4.1 \pm 0.8\%$	$4.2\pm0.7\%$
Non-prompt $D_s ightarrow au$	$9.0\pm2.0\%$	$8.5\pm1.7\%$
Non-prompt $D^+ \rightarrow \tau$	$0.18 \pm 0.04\%$	$0.17 \pm 0.04\%$
$X_b \to \tau$	$15.5 \pm 2.7\%$	$14.7 \pm 2.3\%$

- Pythia produces them in wrong propotions
- Channels were produced seperatly and added in the given proporitons.

$$\begin{split} \mathcal{B}(D^+ \to \tau) \\ \bullet \quad \text{There is no measurement of } \mathcal{B}(D^+ \to \tau). \\ \bullet \quad \text{One can calculate it from: } \mathcal{B}(D^+ \to \mu \nu_{\!\mu}) + \text{helicity suppression + phase space, hep-ex:0604043.} \\ \bullet \quad \mathcal{B}(D^+ \to \tau \nu_{\!\tau}) = (1.0 \pm 0.1) \times 10^{-3}. \end{split}$$

Signal and background discrimination

- Two multivariate classifiers, \mathcal{M}_{3body} and $\mathcal{M}_{\mathcal{PID}}$.
- \mathcal{M}_{3body} trained using vertex and track fit quality, vertex displacement, vertex pointing, _{PV} vertex isolation and τp_T .
- Used Blending Technique (see the next slide).

- Trained on signal and background MC.
- Calibrated on $D_s \rightarrow \phi(\mu\mu)\pi$ sample.

Blending technique

- Each of the τ lepton production channel have a different signature in terms of kinematic distributions.
- Signal blending technique improved the discriminating power by 6 %

Calibration

- Assume all differences between $\tau \rightarrow \mu \mu \mu$ and $D_s \rightarrow \phi \pi$ come from kinematics (mass, resonance, decay time), which is correct in MC.
- Get correction $D_s \Longrightarrow \tau$ from MC.
- Apply corrections to $D_s \to \phi \pi$ on data.
- Publication in preparation.

• $D_s \rightarrow \phi \pi$ decay well modelled in MC.

Relative normalisation

$$\mathcal{B}(\tau \to \mu \mu \mu) = \frac{\mathcal{B}(D_s \to \phi \pi)}{\mathcal{B}(D_s \to \tau \nu_\tau)} \times f_{D_s}^\tau \times \frac{\varepsilon_{\rm norm}}{\varepsilon_{\rm sig}} \times \frac{N_{\rm sig}}{N_{\rm norm}} = \alpha \times N_{\rm sig}$$

- where ε stands for trigger, reconstruction, selection efficiency.
- $f_{D_s}^{\tau}$ is the fraction of τ coming from D_s .
- norm = normalisation channel $D_s \rightarrow \phi \pi$ i.e. (83 ± 3) % for 2012 data.

2011

2012

Marcin Chrząszcz (Universität Zürich)

Remaining backgrounds

- Fit exponential to invariant mass spectrum in each likelihood bin.
- Don't use the $\pm 30 \text{ MeV}$ region.

Example of most sensitive regions in 2011 and 2012

Results

Marcin Chrząszcz (Universität Zürich)

 $au
ightarrow \mu \mu \mu$ in LHC

²⁴/27

Why are we not putting the mass in the classifier?

- \Rightarrow Why don't we put mass in the classifier?
- \Rightarrow Many reasons:
- Our normalization channel is in different mass range!
- Mass resolution is wrongly modelled in MC.
- Easily to interpret:

Data agreement check, why do we bother?

 \Rightarrow It all boils down to our equation:

$$\mathcal{B}(\tau \to \mu \mu \mu) = \frac{\mathcal{B}(D_s \to \phi \pi)}{\mathcal{B}(D_s \to \tau \nu_{\tau})} \times f_{D_s}^{\tau} \times \frac{\varepsilon_{\mathrm{norm}}}{\varepsilon_{\mathrm{sig}}} \times \frac{N_{\mathrm{sig}}}{N_{\mathrm{norm}}} = \alpha \times N_{\mathrm{sig}}$$

There are 3 variables that we need to terminate: ε_{sig} , ε_{norm} and N_{norm} .

- ε_{norm} ; determine from data, by a cut and count method.
- N_{norm}; determined from data by a simple fit.
- ε_{sig} ; calibrated on data:

$$\varepsilon_{\rm sig} = \varepsilon_{\rm sig}^{\rm MC} \frac{\varepsilon_{\rm norm}^{\rm DATA}}{\varepsilon_{\rm norm}^{\rm MC}}$$

The hack that is used here is: ε_{sig} is ok, but N_{norm} is smaller, so alpha is bigger \Rightarrow worse sensitivity.

Wrap up

- 1. Physics has a different application of ML than computer science.
- 2. There are physics consequance of what you use!
- 3. Blindly taking all varaibles is the bad solution.

Backup

²⁸/27