Quo Vadis P_5' ?

Marcin Chrzaszcz mchrzasz@cern.ch

on behalf of the $B\to K^*\mu\mu$ team

Analysis and software week, CERN
April 28, 2017

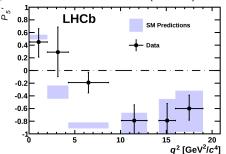
The road (towards NP?)

⇒ Several theory authors proposed to measure a "clean" observable:

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

 \Rightarrow At leading order of α_s and m_b expansion the form factors cancel arxiv::1207.2753

What we were promised:


The road (towards NP?)

⇒ Several theory authors proposed to measure a "clean" observable:

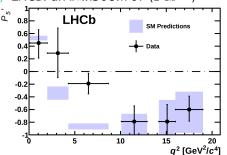
$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

 \Rightarrow At leading order of α_s and m_b expansion the form factors cancel arxiv::1207.2753

 \Rightarrow LHCb: arXiv::1308.1707 (1 fb⁻¹)

What we were promised:

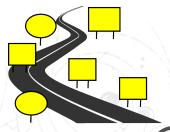
M.Chrzaszcz (UZH) Quo Vadis P_{κ}' ?


The road (towards NP?)

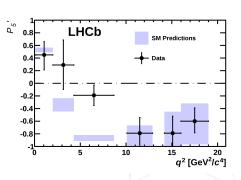
⇒ Several theory authors proposed to measure a "clean" observable:

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

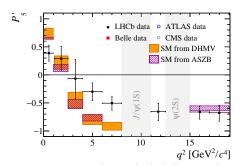
 \Rightarrow At leading order of α_s and m_b expansion the form factors cancel arxiv::1207.2753


 \Rightarrow LHCb: arXiv::1308.1707 (1 fb⁻¹)

What we were promised:

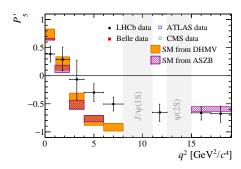


What we got:


M.Chrzaszcz (UZH) Quo Vadis P_5' ?

⇒ 2013 LHCb: arXiv::1308.1707

⇒ 2013 LHCb: arXiv::1308.1707


⇒ 2015 LHCb: arXiv::1512.0444 ⇒ Theory: DHMV: arXiv::1407.8526 ASZB: arXiv::1411.3161

⇒ 2013 LHCb: arXiv::1308.1707

⇒ 2015 LHСЬ:

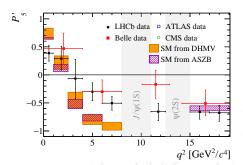
arXiv::1512.0444

⇒ We generated a lot of interest :) The paper has now 115 citations!

⇒ Two alliances were formed:

⇒ We have new physics:

arXiv::1611.04338 L.Silvestrini,


⇒ 2013 LHCb: arXiv::1308.1707

⇒ 2015 LHCb: arXiv::1512.0444

⇒ 2016 Belle:

arXiv::1604.04042

⇒ Theory: DHMV: arXiv::1407.8526 ASZB: arXiv::1411.3161

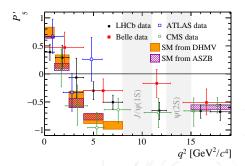
⇒ 2013 LHCb:

arXiv::1308.1707 ⇒ 2015 LHCb:

arXiv::1512.0444

⇒ 2016 Belle:

arXiv::1604.04042


⇒ 2017:

ATLAS-CONF-2017-023

 $(20.5~{\rm fb}^{-1})$ and CMS-PAS-BPH-15-008

 (20.8 fb^{-1})

⇒ Theory: DHMV: arXiv::1407.8526 ASZB: arXiv::1411.3161

Details about their ATLAS & CMS analysis 1/2

- ⇒ The results are based on Run1 data.
- \Rightarrow The measurement of P_5' is possible knowing the B flavour.
- \Rightarrow In LHCb we have the RICH, but ATLAS and CMS don't, so the flavour is assigned by checking two possible mass hypothesis for K^* and choosing the one closer to the SM value (13% for CMS and 11% for ATLAS).
- \Rightarrow The analysis follows our LHCb results from 1 fb⁻¹:
- Not enough events to perform the full angular fit.
- Fold the angles to reduce the number of observables
- In this procedure you lose correlations between the observables
- \Rightarrow The acceptance corrections both in CMS and ATLAS parametrized as $\epsilon(\cos\theta_l,\cos\theta_k,\phi,m)$ in each of the q^2 bin.

Details about their ATLAS & CMS analysis 2/2

- ⇒ Angular acceptance parametrized by polynomial functions.
- \Rightarrow Determination of F_L , P_1 , P_4' , P_5' , P_6' , P_8' and/or S_i i=3,4,5,7,8.
- ⇒ Systematic for S-wave (small)
- \Rightarrow Main systematics: background: charm, partRECO, fake K^* .
- \Rightarrow B \to K*J/ ψ used ONLY for mass PDF.

- ⇒ Angular acceptance parametrized by KDE and sampled histograms.
- \Rightarrow Determination of only P_1 and P'_5 .
- ⇒ Swave fraction inferred from previous measurement.
- ⇒ Main systematics: Control channel differences.
- \Rightarrow B \rightarrow K*J/ ψ used for systematics.

Global analysis

- ⇒ Two main players on the market:
- ⇒ J. Matias, et. al.
- ⇒ Measurements taken into the analysis:
- Angular and Br of $B \to K^* \mu \mu$
- ullet Angular and Br of $B^0_s o \phi \mu \mu$
- ullet Angular and Br of $B o K\mu\mu$
- Br ${
 m B} o X_s \mu \mu$ and ${
 m b} o {
 m s} \gamma$
- $B_s^0 \to \mu\mu$
 - ⇒ There are also subtle difference in the theory treatment of form factors.

⇒ D. Straub, et. al.

- ⇒ Measurements taken into the analysis:
 - ullet Angular and Br of $B o K^*\mu\mu$
- ullet Angular and Br of $B^0_s o \phi \mu \mu$
- ullet Angular and Br of $\mathrm{B} o \mathrm{K} \mu \mu$
- Br B $\to X_s \mu \mu$

$$\Rightarrow$$
 LHCb (3 fb⁻¹):

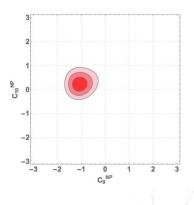
Coefficient	Best Fit	$Pull_{\mathrm{SM}}$
C_9	-1.09	4.5
$C_9 = -C_{10}$	-0.68	4.2
$C_9 = -C_9'$	-1.06	4.8
$C_9=-C_{10}$ and $C_9^\prime=-C_{10}^\prime$	-0.69	4.1

M.Chrzaszcz (UZH) Quo Vadis P_5' ?

$$\Rightarrow$$
 LHCb (3 fb⁻¹) + Belle:

Coefficient	Best Fit	$Pull_{\mathrm{SM}}$
C_9	-1.12	5.0 (!!!)
$C_9 = -C_{10}$	-0.61	4.4
$C_9 = -C_9'$	-1.05	4.5
$C_9=-C_{10}$ and $C_9^\prime=-C_{10}^\prime$	-0.66	4.6

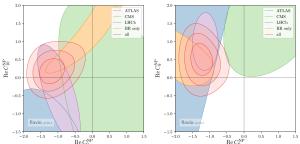
$$\Rightarrow$$
 LHCb (3 fb⁻¹) + Belle + ATLAS:


Coefficient	Best Fit	$Pull_{\mathrm{SM}}$
C_9	-1.14	5.2 (!!!)
$C_9 = -C_{10}$	-0.60	4.4
$C_9 = -C_9'$	-1.08	4.9
$C_9=-C_{10}$ and $C_9^\prime=-C_{10}^\prime$	-0.67	4.6

M.Chrzaszcz (UZH) Quo Vadis P_5' ?

$$\Rightarrow$$
 LHCb (3 fb⁻¹) + Belle + ATLAS + CMS:

Coefficient	Best Fit	$Pull_{\mathrm{SM}}$
C_9	-1.07	4.9
$C_9 = -C_{10}$	-0.58	4.3
$C_9 = -C_9'$	-1.01	4.6
$C_9=-C_{10}$ and $C_9^\prime=-C_{10}^\prime$	-0.61	4.3

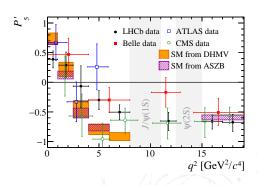

M.Chrzaszcz (UZH) Quo Vadis P_5' ?

So what is the significance? D. Straub, et. al. [1703.09189]

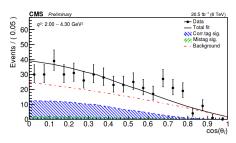
$$\Rightarrow$$
 LHCb (3 fb⁻¹) + CDF + ATLAS + CMS:

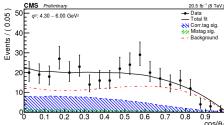
Coefficient	Best Fit	$Pull_{\mathrm{SM}}$
C_9	-1.21	4.9
$C_9 = -C_{10}$	-0.62	4.2

⇒ Both groups came to a similar conclusion!


Quo Vadis P_5' ? Status Quo P_5' !

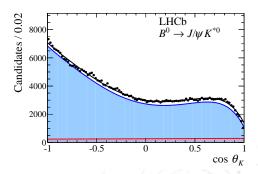
Comments about the CMS result 1/4


⇒ Both ATLAS and CMS use. our folding technique that was used in the 1 fb^{-1} analysis. \Rightarrow CMS when performing the angular fit fixes the F_L , F_S and A_s from the previous analysis on the same data! ⇒ They claim that they check with TOYMC that it is correct. However some doubts remain. ⇒ Feldman-Cousin procedure can underestimate the errors in this case.

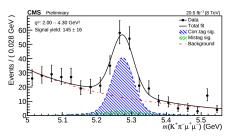

⇒ More details on toy validation and or bootstrapping the data would be nice!

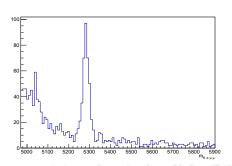
Comments about the CMS result 2/4

- \Rightarrow There seems to be a structure in the $\cos \theta_l$ distribution.
- \Rightarrow A.Bevan suggested this might be due to a $B \to D(K\pi\pi)\pi$
- \Rightarrow Can be easily checked with MC.



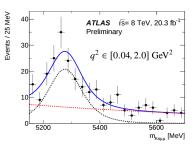
M.Chrzaszcz (UZH) Quo Vadis $P_{\mathtt{s}}'$?

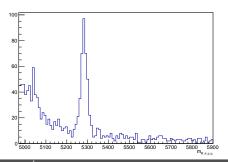

Comments about the CMS result 3/4


- \Rightarrow In the decay of $B \to K^*J/\psi$ they fail to
- reproduce the value of F_L .
- ⇒ They assign the difference as a systematic uncertainty.
- \Rightarrow There is no guarantee that this has no q^2 dependence.
- \Rightarrow They tag the K^* via which of the configurations: $K^+\pi^-$, $K^-\pi^+$ is closer to the nominal K^* mass.
- ⇒ They model the mis-tag fractions from MC.
- \Rightarrow The mis-tag is modelled by MC. Systematic assign from $B \to K^*J/\psi$ (no q^2 dependence assumed).

Comments about the CMS result 4/4

- \Rightarrow CMS uses a long range mass window in the $m_{{\rm K}\pi\mu\mu}$ fits.
- ⇒ In LHCb we saw non negligible amount of PARTRECO events.
- \Rightarrow In their fits they don't account for it.





 $^{13}/_{15}$

Comments about the ATLAS result

- ⇒ ATLAS has much worse mass resolution compared to CMS and LHCb.
- \Rightarrow They cut tight on the $m_{{\rm K}\pi\mu\mu}$ as we did.
- ⇒ How ever it is not obvious that they are not affected because of the resolution.

¹⁴/₁₅

Conclusion

- ⇒ The anomaly is alive and well!
- ⇒ Inclusion of new results increases the significance.
- \Rightarrow Tension with SM seen in P_5' by Atlas, Belle and LHCb. CMS result in good agreement with SM, but consistent with our results.
- ⇒ Some discussion on aspects of the CMS analysis ongoing.
- ⇒ Run2 data will confirm or disprove the anomaly (of course the nature of the anomaly is a different question).
- \Rightarrow The corrected measurement of $Br(B \to K^*\mu\mu)$ [see Kostas slides] will increase the tension with SM further, will agree better with $Br(B_s^0 \to \phi\mu\mu)$ and $Br(B \to K\mu\mu)$

M.Chrzaszcz (UZH) Quo Vadis P_5' ?

Backup

