Anomalies in Physics or Physics of anomalies?

Marcin Chrząszcz mchrzasz@cern.ch

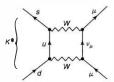
IFJ FCAL workshop May 10, 2018

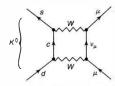
Outline

- 1. Why flavour is important.
- 2. The flavour anomalies:
 - $\circ R(D^*)$
 - \circ R_K and $R_{{
 m K}^*}$
 - $\circ P_5'$
- 3. Global fits results.
- 4. Conclusions.

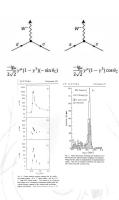
Why Flavour is important?

A lesson from history - GIM mechanism

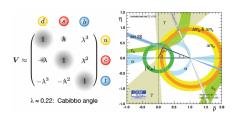




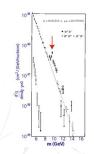
- Cabibbo angle was successful in explaining dozens of decay rates in the 1960s.
- There was, however, one that was not observed by experiments: $K^0 \to \mu^- \mu^+$.
- Glashow, Iliopoulos, Maiani (GIM) mechanism was proposed in the 1970 to fix this problem. The mechanism required the existence of a 4th quark.
- At that point most of the people were skeptical about that. Fortunately in 1974 the discovery of the J/ψ meson silenced the skeptics.



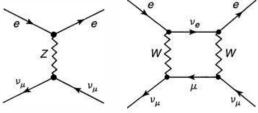
A lesson from history - CKM matrix



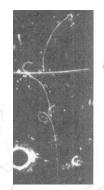
- Similarly, CP violation was discovered in 1960s in the neutral kaons decays.
- 2×2 Cabbibo matrix could not allow for any CP violation.
- For CP violation to be possible one needs at least a 3 × 3 unitary matrix
 → Cabibbo-Kobayashi-Maskawa matrix (1973).
- It predicts existence of b (1977) and t (1995) quarks.



A lesson from history - Weak neutral current



- Weak neutral currents were first introduced in 1958 by Buldman.
- Later on they were naturally incorporated into unification of weak and electromagnetic interactions.
- 't Hooft proved that the GWS models was renormalizable.
- Everything was there on theory side, only missing piece was the experiment, till 1973.



Modern Flavour Physics

Study the CKM matrix

Arises from Higgs Yukawa interactions
Unitary in the SM, with one CP violating phase.

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

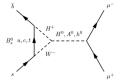
Test unitarity with many measurements.

Find new sources of CPV wru anti-matter!?

Measure decays of ground state b-hadrons

Properties influenced by virtual particles in NP models

Compare results to SM predictions (need QCD input).



Particularly sensitive to NP models preferring third generation.

Modern Flavour Physics

Study the CKM matrix

Arises from Higgs Yukawa interactions

Unitary in the SM, with one CP violating phase.

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

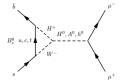
Test unitarity with many measurements.

Find new sources of CPV wru anti-matter!?

Measure decays of ground state b-hadrons

Properties influenced by virtual particles in NP models

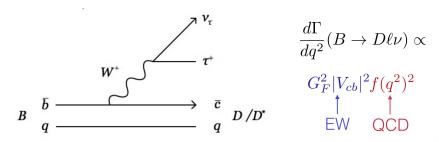
Compare results to SM predictions (need QCD input).



Particularly sensitive to NP models preferring third generation.

Why semi-leptonic decays?

 \Rightarrow A decay is semi-leptonic if its products are part leptons and part hadrons.

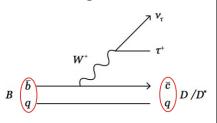


⇒ These decays can be factorised into the weak and strong parts, greatly simplifying theoretical calculations.

Types of semi-leptonic decays

Two types of semi-leptonic b-decay

Charged current

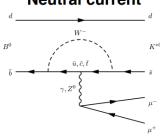


Can proceed via tree level -large O(%) branching fractions.

Factorised up to (small) QED corrections.

When you factorise, QCD part broken down into form-factors.

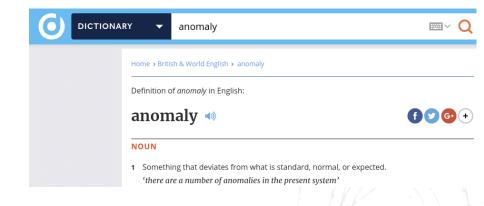
Neutral current



Forbidden at tree level - low O(10-6) branching fractions.

Factorised up to corrections from $B \to h(\to \mu^+\mu^-)h$ decays.

Anomalies



Anomalies

- \Rightarrow Today I will talk about three anomalies in B decays:
- $R(D^*)$
- R_{K/K*}
 P'₅

Anomaly 1

$$R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \mu \nu)}$$

$R(D^*)$

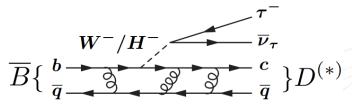
⇒ Large rate of charged current decays allow for measurement in semi-tauonic decays

$$R(D^*) = rac{\mathcal{B}(B o D^* au
u)}{\mathcal{B}(B o D^* \mu
u)}$$

⇒ Form ratio of decays with different lepton generations.

 \Rightarrow Cancel QCD uncertainties.

 $\Rightarrow R(D^*)$ is sensitive to the NP with strong 3rd generation couplings.



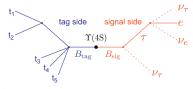
The Rule of three

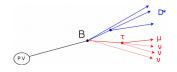
	BaBar	Belle	LHCb
#B's produced	O(400M)	O(700M)	O(800B)*
Production mechanism	$\Upsilon(4S) o Bar{B}$	$\Upsilon(4S) o Bar{B}$	$pp o gg o bar{b}$
Publications	Phys.Rev.Lett 109, 101802 (2012)	Phys.Rev.D 92, 072014 (2015)	Phys.Rev.Lett.115, 111803 (2015)
	Phys. Rev. D 88, 072012 (2013)	arXiv:1603.06711	

Experimental challenges

- \Rightarrow With the $\tau \to \mu \nu \nu$ decay we are missing 3 neutrinos!
- ⇒ No sharp peak in any distributions.

⇒ At B-factories, can control this using tagging technique.

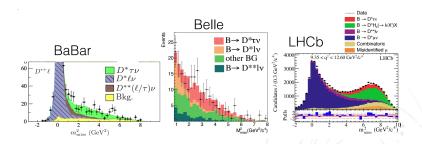




⇒ More difficult at LHCb, compensate using large boost (flight information) and huge B production

Signal fits

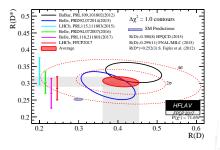
- ⇒ Three main backgrounds:
- $B \rightarrow D^* \ell \nu$.
- $B \rightarrow D^{**}\ell\nu$.
- $B \rightarrow DD^*X$



 \Rightarrow Fit variables which discriminate between the signal and background modes.

Results

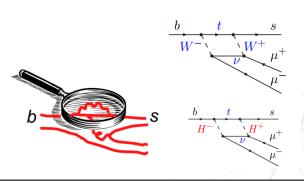
⇒ All experiments see an access w.r.t. to SM prediction:

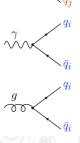


- ⇒ Theoretical uncertainties negligible.
- \Rightarrow The ball is on the experimental side.

Introduction to anomaly 2 & 3

- The SM allows only the charged interactions to change flavour.
 - o Other interactions are flavour conserving.
- One can escape this constraint and produce $b \rightarrow s$ and $b \rightarrow d$ at loop level.
 - $\circ~$ These kind of processes are suppressed in SM \rightarrow Rare decays.
 - New Physics can enter in the loops.





Analysis of Rare decays

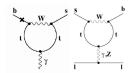
Analysis of FCNC in a model-independent approach, effective Hamiltonian:

$$b \to s\gamma(^*): \mathcal{H}_{\Delta F=1}^{SM} \propto \sum_{i=1}^{10} V_{ts}^* V_{tb} \mathcal{C}_i \mathcal{O}_i + \dots$$

•
$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b \left(\bar{s}\sigma^{\mu\nu} P_R b\right) F_{\mu\nu}$$

$$\bullet \ \, \mathcal{O}_9 = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) \; (\bar{\ell}\gamma_\mu \ell) \;$$

$$\bullet \ \, \mathcal{O}_{10} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) \; (\bar{\ell}\gamma_\mu \gamma_5 \ell) \text{, ...}$$



 \bullet SM Wilson coefficients up to NNLO + e.m. corrections at $\mu_{ref}=4.8$ GeV [Misiak et al.]:

$$\mathcal{C}_7^{\rm SM} = -0.29,\, \mathcal{C}_9^{\rm SM} = 4.1,\, \mathcal{C}_{10}^{\rm SM} = -4.3$$

ullet NP changes short distance $\mathcal{C}_i-\mathcal{C}_i^{\mathrm{SM}}=\mathcal{C}_i^{\mathrm{NP}}$ and induce new operators, like

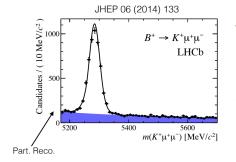
 $\mathcal{O}_{7,9,10}' = \mathcal{O}_{7,9,10} \; (P_L \leftrightarrow P_R)$... also scalars, pseudoescalar, tensor operators...

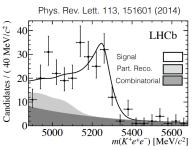
Anomaly 2

$$R_{\textit{K}/\textit{K}^*} = \frac{\mathcal{B}(\textit{B} \rightarrow \textit{K}/\textit{K}^*\mu\mu)}{\mathcal{B}(\textit{B} \rightarrow \textit{K}/\textit{K}^*ee)}$$

Measurement at LHCb

- ⇒ Most precise measurements performed at LHCb.
- ⇒ Main challenge is due to electron Bremsstrahlung.



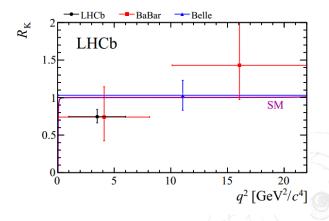


⇒ To protect ourself from electron reconstruction issue we use double ratio:

$$R_K = \frac{\mathcal{B}(\textit{B} \rightarrow \textit{K}\mu\mu) \times \mathcal{B}(\textit{B} \rightarrow \textit{KJ/}\psi(\rightarrow ee))}{\mathcal{B}(\textit{B} \rightarrow \textit{Kee}) \times \mathcal{B}(\textit{B} \rightarrow \textit{KJ/}\psi(\rightarrow \mu\mu))}$$

Result

$$R_K = 0.745^{+0.090}_{-0.074}(\mathrm{stat.}) \pm 0.036(\mathrm{syst})$$



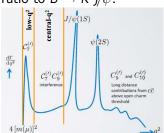
 $\Rightarrow 2.6 \sigma$ away from SM prediction.

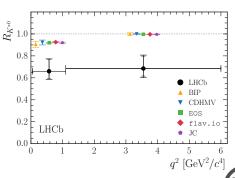
The continuation - R_{κ^*}

 \Rightarrow The neutral continuation of the R_K measurement is to measure its partner:

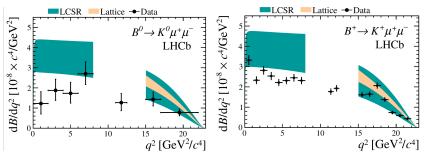
$$R_{\mathbf{K}^*} = \frac{\mathcal{B}(\mathbf{B} \to \mathbf{K}^* \mu \mu)}{\mathcal{B}(\mathbf{B} \to \mathbf{K}^* e e)}$$

- \Rightarrow Measurement performed in two q^2 bins.
- \Rightarrow Normalized in double ratio to $B \to K^* J/\psi$.

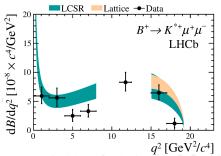




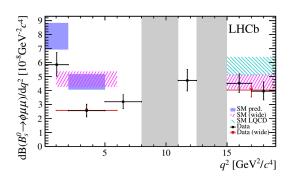
Branching fraction measurements of $B \to K^{*\pm} \mu \mu$



 Despite large theoretical errors the results are consistently smaller than SM prediction.



Branching fraction measurements of $B_s^0 \to \phi \mu \mu$



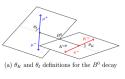
- Recent LHCb measurement [JHEPP09 (2015) 179].
- Suppressed by $\frac{f_s}{f_d}$.
- \bullet Cleaner because of narrow ϕ resonance.
- $3.3~\sigma$ deviation in SM in the $1-6{\rm GeV}^2$ bin.

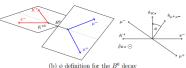
Anomaly 3

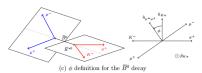
$$P_5' = \sqrt{2} \frac{\Re(A_{\perp}^L A_{\parallel}^{L*} - A_{\perp}^R A_{\parallel}^{R*})}{\sqrt{|A_0|^2(|A_{\perp}|^2 + |A_0|^2)}}$$

$B^0 \to K^* \mu^- \mu^+$ kinematics

- \Rightarrow The kinematics of $B^0 \to K^* \mu^- \mu^+$ decay is described by three angles θ_l , θ_k , ϕ and invariant mass of the dimuon system (q^2) .
- $\Rightarrow \cos \theta_k$: the angle between the direction of the kaon in the K^* ($\overline{K^*}$) rest frame and the direction of the K^* ($\overline{K^*}$) in the B^0 (\bar{B}^0) rest frame.
- $\Rightarrow \cos \theta_l$: the angle between the direction of the μ^- (μ^+) in the dimuon rest frame and the direction of the dimuon in the B^0 (\bar{B}^0) rest frame.
- \Rightarrow ϕ : the angle between the plane containing the μ^- and μ^+ and the plane containing the kaon and pion from the K^* .







$B^0 \to K^* \mu^- \mu^+$ kinematics

 \Rightarrow The kinematics of $B^0 \to K^* \mu^- \mu^+$ decay is described by three angles θ_l , θ_k , ϕ and invariant mass of the dimuon system (q^2) .

$$\begin{split} \frac{d^4\Gamma}{dq^2 \, d\!\cos\theta_K \, d\!\cos\theta_l \, d\phi} &=& \frac{9}{32\pi} \left[J_{1s} \sin^2\theta_K + J_{1c} \cos^2\theta_K + (J_{2s} \sin^2\theta_K + J_{2c} \cos^2\theta_K) \cos 2\theta_l \right. \\ &+ J_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + J_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ &+ (J_{6s} \sin^2\theta_K + J_{6c} \cos^2\theta_K) \cos \theta_l + J_7 \sin 2\theta_K \sin \theta_l \sin \phi + J_8 \sin 2\theta_K \sin 2\theta_l \sin \phi \\ &+ J_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi \right], \end{split}$$

⇒ This is the most general expression of this kind of decay.

Transversity amplitudes

⇒ One can link the angular observables to transversity amplitudes

$$\begin{split} J_{1s} &= \frac{(2+\beta_\ell^2)}{4} \left[|A_\perp^L|^2 + |A_\parallel^L|^2 + |A_\perp^R|^2 + |A_\parallel^R|^2 \right] + \frac{4m_\ell^2}{q^2} \mathrm{Re} \left(A_\perp^L A_\perp^{R^*} + A_\parallel^L A_\parallel^{R^*} \right) \,, \\ J_{1c} &= |A_0^L|^2 + |A_0^R|^2 + \frac{4m_\ell^2}{q^2} \left[|A_t|^2 + 2\mathrm{Re} (A_0^L A_0^{R^*}) \right] + \beta_\ell^2 |A_S|^2 \,, \\ J_{2s} &= \frac{\beta_\ell^2}{4} \left[|A_\perp^L|^2 + |A_\parallel^R|^2 + |A_\perp^R|^2 \right] \,, \qquad J_{2c} = -\beta_\ell^2 \left[|A_0^L|^2 + |A_0^R|^2 \right] \,, \\ J_3 &= \frac{1}{2} \beta_\ell^2 \left[|A_\perp^L|^2 - |A_\parallel^L|^2 + |A_\perp^R|^2 - |A_\parallel^R|^2 \right] \,, \qquad J_4 = \frac{1}{\sqrt{2}} \beta_\ell^2 \left[\mathrm{Re} (A_0^L A_\parallel^{L^*} + A_0^R A_\parallel^{R^*}) \right] \,, \\ J_5 &= \sqrt{2} \beta_\ell \left[\mathrm{Re} (A_0^L A_\perp^{L^*} - A_0^R A_\perp^{R^*}) - \frac{m_\ell}{\sqrt{q^2}} \mathrm{Re} (A_\parallel^L A_S^* + A_\parallel^{R^*} A_S) \right] \,, \\ J_{6s} &= 2 \beta_\ell \left[\mathrm{Re} (A_\parallel^L A_\perp^{L^*} - A_\parallel^R A_\parallel^{R^*}) \right] \,, \qquad J_{6c} = 4 \beta_\ell \left[\frac{m_\ell}{\sqrt{q^2}} \mathrm{Re} (A_0^L A_S^* + A_0^{R^*} A_S) \,, \right] \,, \\ J_7 &= \sqrt{2} \beta_\ell \left[\mathrm{Im} (A_0^L A_\parallel^{L^*} - A_0^R A_\parallel^{R^*}) + \frac{m_\ell}{\sqrt{q^2}} \mathrm{Im} (A_\perp^L A_S^* - A_\perp^{R^*} A_S) \right] \,, \end{split}$$

 $J_9 = \beta_\ell^2 \left[\operatorname{Im}(A_{\parallel}^{L*} A_{\perp}^{L} + A_{\parallel}^{R*} A_{\perp}^{R}) \right] ,$

 $J_8 = \frac{1}{\sqrt{2}} \beta_\ell^2 \left[\text{Im}(A_0^L A_\perp^{L*} + A_0^R A_\perp^{R*}) \right],$

Link to effective operators

 \Rightarrow So here is where the magic happens. At leading order the amplitudes can be written as:

$$\begin{split} A_{\perp}^{L,R} &= \sqrt{2}Nm_B(1-\hat{s}) \bigg[(\mathcal{C}_9^{\mathrm{eff}} + \mathcal{C}_9^{\mathrm{eff}\prime}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}^\prime) + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} + \mathcal{C}_7^{\mathrm{eff}\prime}) \bigg] \xi_{\perp}(E_K^*) \\ A_{\parallel}^{L,R} &= -\sqrt{2}Nm_B(1-\hat{s}) \bigg[(\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}\prime}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}^\prime) + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}\prime}) \bigg] \xi_{\perp}(E_{K^*}) \\ A_0^{L,R} &= -\frac{Nm_B(1-\hat{s})^2}{2\hat{m}_K^* \sqrt{\hat{s}}} \bigg[(\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}\prime}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}^\prime) + 2\hat{m}_b(\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}\prime}) \bigg] \xi_{\parallel}(E_{K^*}), \end{split}$$

where $\hat{s}=q^2/m_B^2$, $\hat{m}_i=m_i/m_B$. The $\xi_{\parallel,\perp}$ are the form factors.

Link to effective operators

 \Rightarrow So here is where the magic happens. At leading order the amplitudes can be written as:

$$\begin{split} A_{\perp}^{L,R} &= \sqrt{2}Nm_B(1-\hat{s}) \left[(\mathcal{C}_9^{\mathrm{eff}} + \mathcal{C}_9^{\mathrm{eff}\prime}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}^\prime) + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} + \mathcal{C}_7^{\mathrm{eff}\prime}) \right] \xi_{\perp}(E_{K}^*) \\ A_{\parallel}^{L,R} &= -\sqrt{2}Nm_B(1-\hat{s}) \left[(\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}\prime}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}^\prime) + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}\prime}) \right] \xi_{\perp}(E_{K}^*) \\ A_0^{L,R} &= -\frac{Nm_B(1-\hat{s})^2}{2\hat{m}_K^* \sqrt{\hat{s}}} \left[(\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}\prime}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}^\prime) + 2\hat{m}_b(\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}\prime}) \right] \xi_{\parallel}(E_{K}^*), \end{split}$$

where $\hat{s}=q^2/m_B^2$, $\hat{m}_i=m_i/m_B$. The $\xi_{\parallel,\perp}$ are the form factors.

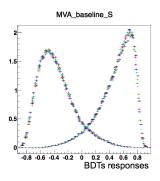
 \Rightarrow Now we can construct observables that cancel the ξ form factors at leading order:

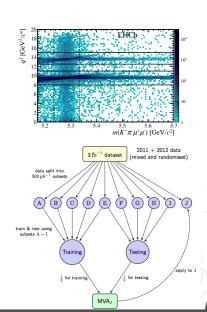
$$P_5' = \frac{J_5 + \bar{J}_5}{2\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}}$$

LHCb measurement of $B_d^0 \to K^* \mu \mu$

Multivariate simulation

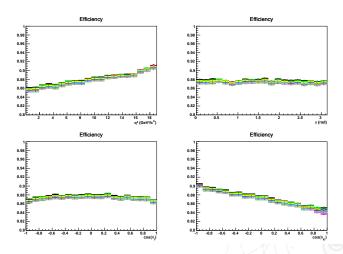
- PID, kinematics and isolation variables used in a Boosted Decision Tree (BDT) to discriminate signal and background.
- BDT with k-Folding technique.
- Completely data driven.





Multivariate simulation, efficiency

⇒ BDT was also checked in order not to bias our angular distribution:



⇒ The BDT has small impact on our angular observables. We will correct for these effects later on.

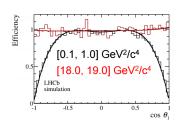
Detector acceptance

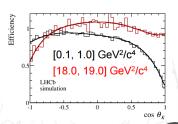
- Detector distorts our angular distribution.
- We need to model this effect.
- 4D function is used:

$$\epsilon(\cos\theta_l, \cos\theta_k, \phi, q^2) = \sum_{ijkl} P_i(\cos\theta_l) P_j(\cos\theta_k) P_k(\phi) P_l(q^2),$$

where P_i is the Legendre polynomial of order i.

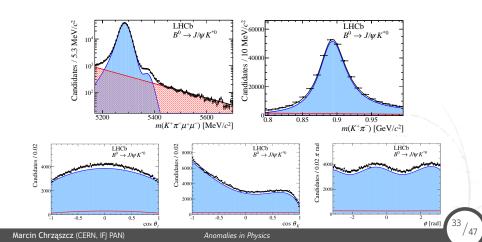
- We use up to 4^{th} , 5^{th} , 6^{th} , 5^{th} order for the $\cos \theta_l$, $\cos \theta_k$, ϕ , q^2 .
- The coefficients were determined using Method of Moments, with a huge simulation sample.
- The simulation was done assuming a flat phase space and reweighing the q^2 distribution to make is flat.
- To make this work the q² distribution needs to be reweighted to be flat.



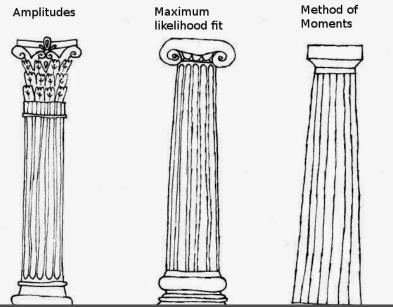


Control channel

- We tested our unfolding procedure on $B \to J/\psi K^*$.
- The result is in perfect agreement with other experiments and our different analysis of this decay.



The columns of New Physics



The columns of New Physics

1. Maximum likelihood fit:

- The most standard way of obtaining the parameters.
- Suffers from convergence problems, under coverages, etc. in low statistics.

2. Method of moments:

- \circ Less precise then the likelihood estimator (10 15% larger uncertainties).
- o Does not suffer from the problems of likelihood fit.

3. Amplitude fit:

- Incorporates all the physical symmetries inside the amplitudes! The most precise estimator.
- Has theoretical assumptions inside!

Maximum likelihood fit - Results

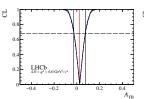
 \Rightarrow In the maximum likelihood fit one could weight the events accordingly to the 1

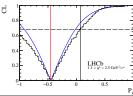
$$\varepsilon(\cos\theta_l,\cos\theta_k,\phi,q^2)$$

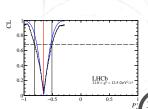
⇒ Better alternative is to put the efficiency into the maximum likelihood fit itself:

$$\mathcal{L} = \prod_{i=1}^{N} \epsilon_i(\Omega_i, q_i^2) \mathcal{P}(\Omega_i, q_i^2) / \int \epsilon(\Omega, q^2) \mathcal{P}(\Omega, q^2) d\Omega dq^2$$

- ⇒ Only the relative weights matters!
- ⇒ The Procedure was commissioned with TOY MC study.
- ⇒ Use Feldmann-Cousins to determine the uncertainties.
- \Rightarrow Angular background component is modelled with $2^{\rm nd}$ order Chebyshev polynomials, which was tested on the side-bands.
- ⇒ S-wave component treated as nuisance parameter.







³⁶/47

Method of moments

- \Rightarrow See Phys.Rev.D91(2015)114012, F.Beaujean , M.Chrzaszcz, N.Serra, D. van Dyk for details.
- \Rightarrow The idea behind Method of Moments is simple: Use orthogonality of spherical harmonics, $f_j(\overrightarrow{\Omega})$ to solve for coefficients within a q^2 bin:

$$\int f_i(\overrightarrow{\Omega})f_j(\overrightarrow{\Omega}) = \delta_{ij}$$

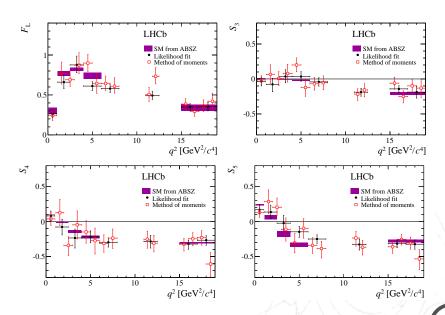
$$M_i = \int \left(\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2}\right) \frac{d^3(\Gamma + \bar{\Gamma})}{d\vec{\Omega}} f_i(\vec{\Omega}) d\Omega$$

- ⇒ Don't have true angular distribution but we "sample" it with our data.
- \Rightarrow Therefore: $\int \rightarrow \sum$ and $M_i \rightarrow \widehat{M}_i$

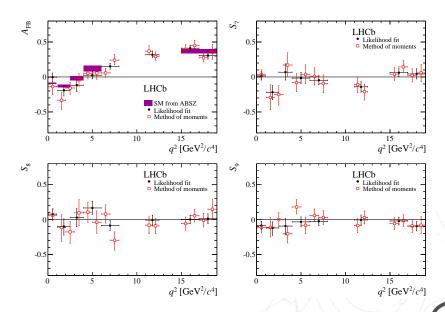
$$\hat{M}_i = \frac{1}{\sum_e \omega_e} \sum_e \omega_e f_i(\overrightarrow{\Omega}_e)$$

 \Rightarrow The weight ω accounts for the efficiency. Again the normalization of weights does not matter.

Method of moments - results

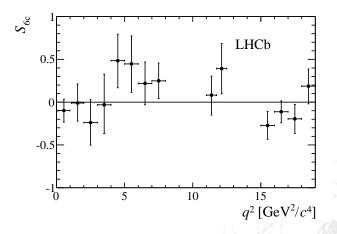


Method of moments - results



Method of moments - results

⇒ Method of Moments allowed us to measure for the first time a new observable:



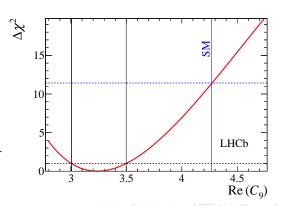
Compatibility with SM

- \Rightarrow Use EOS software package to test compatibility with SM.
- \Rightarrow Perform the χ^2 fit to the measured:

$$F_L, A_{FB}, S_{3,...,9}.$$

- \Rightarrow Float a vector coupling: $\Re(C_9)$.
- \Rightarrow Best fit is found to be $3.4~\sigma$ away from the SM.

$$\Delta \Re(C_9) \equiv \Re(C_9)^{\text{fit}} - \Re(C_9)^{\text{SM}} = -1.03$$



Global fit to $b \rightarrow s\ell\ell$ measurements

Link the observables

 \Rightarrow Fits prepare by S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, arXiv::1510.04239

Inclusive

Exclusive leptonic

• Exclusive radiative/semileptonic

$$\circ B_s \to \phi \ell^+ \ell^- (dBR/dq^2, \text{Angular Observables}) \dots \mathcal{C}_7^{(\prime)}, \mathcal{C}_9^{(\prime)}, \mathcal{C}_{10}^{(\prime)}$$

$$\circ \Lambda_b \to \Lambda \ell^+ \ell^-$$
 (None so far)

etc.

Statistic details

⇒ Frequentist approach:

$$\chi^{2}(C_{i}) = [O_{\exp} - O_{\operatorname{th}}(C_{i})]_{j} [Cov^{-1}]_{jk} [O_{\exp} - O_{\operatorname{th}}(C_{i})]_{k}$$

- $\mathbf{Cov} = \mathbf{Cov}^{\mathsf{exp}} + \mathbf{Cov}^{\mathsf{th}}$. We have Cov^{exp} for the first time
- ullet Calculate $Cov^{ ext{th}}$: correlated multigaussian scan over all nuisance parameters
- Cov^{th} depends on C_i : Must check this dependence

For the Fit:

- $\bullet \ \ {\rm Minimise} \ \chi^2 \to \chi^2_{\rm min} = \chi^2(C_i^0) \quad \ ({\rm Best \ Fit \ Point} = C_i^0)$
- Confidence level regions: $\chi^2(C_i) \chi^2_{\min} < \Delta \chi_{\sigma,n}$
- ⇒ The results from 1D scans:

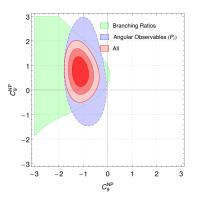
Coefficient $C_i^{NP} = C_i - C_i^{SM}$ Best fit

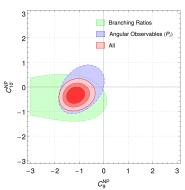
 3σ

 $\mathsf{Pull}_{\mathrm{SM}}$

Theory implications

- ullet The data can be explained by modifying the C_9 Wilson coefficient.
- \bullet Overall there is around $4.5~\sigma$ discrepancy wrt. SM.



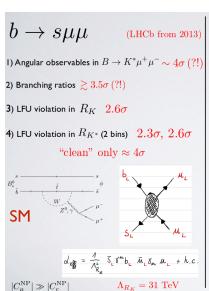


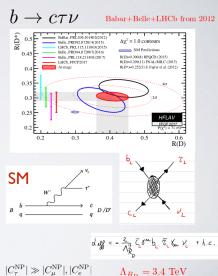
2D scans

Coefficient	Best Fit Point	$Pull_{\mathrm{SM}}$
$(\mathcal{C}_7^{ ext{NP}},\mathcal{C}_9^{ ext{NP}})$	(-0.00, -1.07)	4.1
$(\mathcal{C}_9^{ ext{NP}},\mathcal{C}_{10}^{ ext{NP}})$	(-1.08, 0.33)	4.3
$(\mathcal{C}_9^{\mathrm{NP}},\mathcal{C}_{7^{'}}^{\mathrm{NP}})$	(-1.09, 0.02)	4.2
$(\mathcal{C}_9^{\mathrm{NP}},\mathcal{C}_{9^{'}}^{\mathrm{NP}})$	(-1.12, 0.77)	4.5
$(\mathcal{C}_9^{\mathrm{NP}},\mathcal{C}_{10^{'}}^{\mathrm{NP}})$	(-1.17, -0.35)	4.5
$(\mathcal{C}_9^{ ext{NP}}=-\mathcal{C}_{9^{'}}^{ ext{NP}},\mathcal{C}_{10}^{ ext{NP}}=\mathcal{C}_{10^{'}}^{ ext{NP}})$	(-1.15, 0.34)	4.7
$(\mathcal{C}_9^{\mathrm{NP}} = -\mathcal{C}_{9^{'}}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}} = -\mathcal{C}_{10^{'}}^{\mathrm{NP}})$	(-1.06, 0.06)	4.4
$(\mathcal{C}_9^{ ext{NP}}=\mathcal{C}_{9^{'}}^{ ext{NP}},\mathcal{C}_{10}^{ ext{NP}}=\mathcal{C}_{10^{'}}^{ ext{NP}})$	(-0.64, -0.21)	3.9
$(\mathcal{C}_9^{ ext{NP}}=-\mathcal{C}_{10}^{ ext{NP}},\mathcal{C}_{9^{'}}^{ ext{NP}}=\mathcal{C}_{10^{'}}^{ ext{NP}})$	(-0.72, 0.29)	3.8

- ullet C_9^{NP} always play a dominant role
- \bullet All 2D scenarios above 4σ are quite indistinguishable.

Scale of NP?





⇒ Stolen from M. Nardecchia

Conclusions

- Clear tensions wrt. SM predictions!
- Measurements cluster in the same direction.
- We are not opening the champagne yet!
- Still need improvement both on theory and experimental side.
- Time will tell if this is QCD+fluctuations or new Physics:

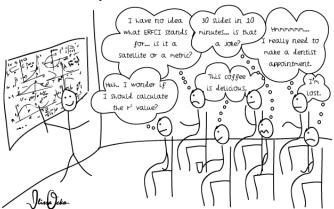
46/47

Conclusions

- Clear tensions wrt. SM predictions!
- Measurements cluster in the same direction.
- We are not opening the champagne yet!
- Still need improvement both on theory and experimental side.
- Time will tell if this is QCD+fluctuations or new Physics:

"... when you have eliminated all the Standard Model explanations, whatever remains, however improbable, must be New Physics." prof. Joaquim Matias

Thank you for the attention!



Backup

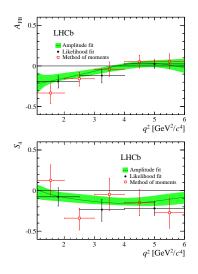
Amplitudes method

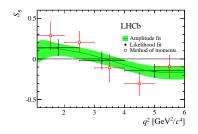
- \Rightarrow Fit for amplitudes as (continuous) functions of q^2 in the region: $q^2 \in [1.1.6.0]~{\rm GeV}^2/c^4.$
- ⇒ Needs some Ansatz:

$$A(q^2) = \alpha + \beta q^2 + \frac{\gamma}{q^2}$$

- ⇒ The assumption is tested extensively with toys.
- \Rightarrow Set of 3 complex parameters α, β, γ per vector amplitude:
 - L, R, 0, \parallel , \perp , \Re , $\Im \mapsto 3 \times 2 \times 3 \times 2 = 36$ DoF.
 - Scalar amplitudes: +4 DoF.
- Symmetries of the amplitudes reduces the total budget to: 28.
- ⇒ The technique is described in JHEP06(2015)084.
- \Rightarrow Allows to build the observables as continuous functions of q^2 :
- At current point the method is limited by statistics.
- In the future the power of this method will increase.
- ⇒ Allows to measure the zero-crossing points for free and with smaller errors than previous methods.

Amplitudes - results





Zero crossing points:

$$\begin{array}{ll} q_0(S_4) < 2.65 & \text{at } 95\% \ CL \\ q_0(S_5) \in [2.49, 3.95] & \text{at } 68\% \ CL \\ q_0(A_{FB}) \in [3.40, 4.87] & \text{at } 68\% \ CL \end{array}$$