Searches for long-lived light particles at LHCb

Marcin Chrząszcz mchrzasz@cern.ch

University of Zurich^{uzH}

SUSY 2015, Tahoe City, 23-29 August, 2015

Why long-lived particles?

- We all know here that the SM is incomplete.
- Unfortunately we do no know what is the scale of NP.
- NP still can come from the Higgs sector ⇒ not all properties are yet constrained.
- There is a long list of theoretical models that predict the existence of new particles that couple to the SM sector by mixing with the Higgs.

- Inflaton, axion-like, dark matter mediator models also predict the new boson to be light.
- SUSY models also can have stable long living particles like \tilde{q} , $\tilde{\ell}$.

LHCb detector - tracking

- Excellent Impact Parameter (IP) resolution (20 μ m). \Rightarrow Identify secondary vertices from heavy flavour decays
- Proper time resolution $\sim 40 \ {\rm fs}.$
 - \Rightarrow Good separation of primary and secondary vertices.
- Excellent momentum ($\delta p/p \sim 0.4 0.6\%$) and inv. mass resolution. \Rightarrow Low combinatorial background.

p

 $L \sim 7 \,\mathrm{mm} \mathrm{SV}$

LHCb detector - particle identification

- Excellent Muon identification $\epsilon_{\mu
 ightarrow \mu} \sim 97\%$, $\epsilon_{\pi
 ightarrow \mu} \sim 1-3\%$
- Good $K \pi$ separation via RICH detectors, $\epsilon_{K \to K} \sim 95\%$, $\epsilon_{\pi \to K} \sim 5\%$. \Rightarrow Reject peaking backgrounds.
- High trigger efficiencies, low momentum thresholds. Muons: $p_T > 1.76 \text{GeV}$ at L0, $p_T > 1.0 \text{GeV}$ at HLT1, $B \rightarrow J/\psi X$: Trigger $\sim 90\%$.

Data taken by LHCb

• In 2011 and 2012 LHCb has gathered 3 fb^{-1} of pp collisions.

Lepton Flavour/Number Violation

```
Lepton Flavour Violation(LFV):
```

After μ^- was discovered it was natural to think of it as an excited e^- .

- Expected: $B(\mu \rightarrow e\gamma) \approx 10^{-4}$
- Unless another ν , in intermediate vector boson loop, cancels.

I.I.Rabi:

"Who ordered that?"

- Up to this day charged LFV is being searched for in various decay modes.
- LFV was already found in neutrino sector (oscillations).
- Lepton Number Violation (LNV)
- Even with LFV, lepton number can be a conserved quantity.
- Many NP models predict it violation(Majorana neutrinos)
- Searched in so called Neutrinoless double β decays.

 $\nu_{\mu} = \nu_{e}$

LNV in bottom decays

- resonant production in accessible mass range
- rates depend on Majorana neutrino-lepton coupling $|V_{\mu4}|$ (e.g. arXiv:0901.3589)
- $m_4 = m_{\ell^-, \pi^+}$

•
$$m_{\mu} + m_{\pi} < m_4 < m_B - m_{\mu}$$

Diagram without mass restriction Cabbibo favoured for $B \rightarrow D$ Analogous to double β decay.

Virtual Majorana neutrinos

$$\begin{split} \mathcal{B}(B^- &\to D^+ \mu^- \mu^-) < 6.9 \times 10^{-7} \\ &\textcircled{0}{95\% \text{ CL}} \\ &\texttt{Based on } 0.41 \text{ fb}^{-1} \text{ 7 TeV data.} \end{split}$$

Phys. Rev.D85 (2012) 112004

 $\mathcal{B}(B^- \to D^{*+} \mu^- \mu^-) < 2.4 \times 10^{-6}$

@ 95 % CL

On-shell Majorana neutrinos

- $B^- \rightarrow \pi^+ \mu^- \mu^-$ searched with full data set $3 \ {\rm fb}^{-1}$.
- Cut based analysis.
- Normalization channel $B^+ \rightarrow J/\psi(\mu\mu)K^+$.
- Searches performed for two scenarios:
 - $\circ~$ Short life-time neutrinos: $\tau_4 < 1 ps$
 - $\circ~$ Long life-time neutrinos: $\tau_4 \in (1,1000) ps$

On-shell Majorana neutrinos

Summary on LNV in decays

channel	limit		
$\mathcal{B}(B^- \to \pi^+ e^- e^-)$	$< 2.3 \times 10^{-8}$	@90 % CL	🧃 a
$\mathcal{B}(B^- \to K^+ e^- e^-)$	$< 3.0 \times 10^{-8}$	@90% CL	<u> a</u>
$\mathcal{B}(B^- \to K^{*+}e^-e^-)$	$< 2.8 \times 10^{-6}$	@90% CL	Ö 🤯 b
$\mathcal{B}(B^- \to \rho^+ e^- e^-)$	$< 2.6 \times 10^{-6}$	@90% CL	Öð ^b
$\mathcal{B}(B^- \to D^+ e^- e^-)$	$< 2.6 \times 10^{-6}$	@90% CL	æ
$\mathcal{B}(B^- \to D^+ e^- \mu^-)$	$< 1.8 \times 10^{-6}$	@90% CL	æ
$\mathcal{B}(B^- \to K^+ \mu^- \mu^-)$	$< 5.4 \times 10^{-7}$	@95% CL	Hick d
$\mathcal{B}(B^- \to D^+ \mu^- \mu^-)$	$< 6.9 \times 10^{-7}$	@95% CL	Hich e
$\mathcal{B}(B^- \to D^{*+} \mu^- \mu^-)$	$< 2.4 \times 10^{-6}$	@95% CL	Hich e
$\mathcal{B}(B^- \to D_s^+ \mu^- \mu^-)$	$< 5.8 \times 10^{-7}$	@95% CL	Hich e
$\mathcal{B}(B^- \to D^0 \pi^- \mu^- \mu^-)$	$< 1.5 \times 10^{-6}$	@95% CL	Hich e

^aBaBar,Phys. Rev. D **85**, 071103 (2012) ^bCLEO, Phys. Rev. D **65**, 111102 (2002) ^cBelle, Phys. Rev. D **84**, 071106(R), (2011) ^dLHCb, Phys. Rev. Lett. 108 101601 (2012) ^eLHCb,Phys. Rev. Lett. (112) 131802 (2014)

$B \to K^* \chi(\mu \mu)$ search

• Search for displaced di-muon vertex coming form B meson.

$$B^0 \to K^* \chi(\mu^- \mu^+)$$

- If χ mixes with the Higgs and it is light:
 - $\begin{array}{l} \circ \ \ \Gamma(K \to \pi \chi) \propto m_t^4 \lambda^5 \\ \circ \ \ \Gamma(D \to \pi \chi) \propto m_b^4 \lambda^5 \\ \circ \ \ \Gamma(B \to K \chi) \propto m_t^4 \lambda^2 \end{array}$
- In addition; $K^* \rightarrow K^+ \pi^-$ helps in vertex reconstruction.
- High $\mathcal{B}(\chi \to \mu^- \mu^+)$.

$B \rightarrow K^* \chi(\mu \mu)$ motivation

Discussed models:

1. Inflaton: Phys.Lett. B736 (2014) 494

$$\tau_{\chi} = 10^{-8} - 10^{-10} s$$

$$\circ m_{\chi} \mathcal{O}(1 \text{ GeV})$$

$$\circ \ \mathcal{B}(B \to K\chi) \sim 10^{-6}$$

 $\circ~$ effective couplings to SM particles:

•
$$g_Y \frac{m_f}{v_{EW}}, \ g_Y = \sin \theta$$

- 2. Axion portal: Phys.Rev.D81:034001,2010
 - Prompt decay.
 - Large allowed masses.
 - Axion decay constant: $f_{\chi} \sim 1-3 {
 m ~TeV}$
 - Coupling $\propto \frac{m_f}{f_{\chi}}$.

All those particles have width much smaller than resolution of LHCb detector.

Signal properties

 \Rightarrow Depending on the coupling of the hidden sector we can identify two lifetime regimes:

- Long lifetime (> 0.2 ps)
- Inflaton JHEP 1005:010
- Displaced vertex.
- Almost background free.
- Lower reconstruction efficiency.

Short lifetime ($\leqslant 0.2~{\rm ps}$)

- Dark matter mediator Phys. Lett. B727
- Axion Phys.Rev.D81
- Prompt decay.
- Contaminated via SM decay.

Selection

- Trigger on muons.
- Multivariate selection: μBDT JINST 8(2013)
 μBDT ensures flat efficiency in lifetime of χ.
- Optimized on Punzi figure-of-merit:

$$P_a = \frac{S}{\frac{5}{2} + \sqrt{B}},$$

with S and B are signal and background yields.

- Factorize lifetime into two components: $\mathcal{L} = \mathcal{L}^{\mathrm{prompt}} \bigotimes \mathcal{L}^{\mathrm{displaced}}$
 - \circ Prompt: $\tau < 3\sigma_{\tau}$
 - \mapsto SM background of $B^0 \to K^* \mu^- \mu^+$
 - $\circ~$ Displeased: $\tau > 3\sigma_{\tau}$
 - \mapsto Almost background free.

Search strategy

- B⁰ mass constrained.
- Di-muon mass resolution $\sigma_m = 1 7$ MeV.
- Scan m_{test} in steps of $0.5 \sigma_m$.
 - Wide resonances can't affect the search.
 - Narrows resonances we veto.
- Calculations performed in each m_{test} window.

Results

 \Rightarrow Grey regions correspond to vetoed regions where narrow resonances are expected.

- \Rightarrow Largest deviation seen in $m_{\chi} = 253$ MeV.
- \rightarrow Not statistically significant: local p-value = 0.2.
- \Rightarrow LHCb-PAPER-2015-036 submitted to PRL.

Branching fraction exclusion limit

- \Rightarrow No deviations from background only hypothesis is observed.
- We set a 95% CL upper limit as function of mass and lifetime of the new particle (in the LHCb accessible range).
- Lower lifetimes have better limit due to higher reconstruction efficiency.

Benchmark models

 \Rightarrow Interpretation of the results in two specific models:

(Specific) inflaton model

Axion portal

[LHCb-PAPER-2015-036 in preparation]

Conclusion

- A search for a dark boson in the decay channel $B^0 \rightarrow K^* \mu^- \mu^+$ has been presented. • No deviations from SM observed.
- Results are the most constraining exclusion limit on the process.
- LHCb is suited for search for long lived particles.
- Stay tuned, more searches like this are on they way.

Backup

Marcin Chrząszcz (Universität Zürich)

Searches for long-lived light particles at LHCb