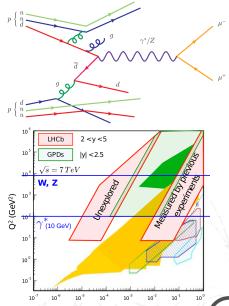
Low Mass Drell-Yan Status Report

Marcin Chrząszcz Katharina Müeller Nicola Chiapolini

University of Zurich^{UZH}

QEE WG, CERN June 9, 2016


Marcin Chrząszcz, Katharina Müeller (UZH)

Low Mass Drell-Yan Status Report

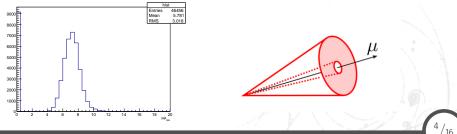
/16

Introduction to Drell-Yan

- Drell-Yan are process of two quark anihilations in which neutral current couples to two leptons.
- The cross section of this process depends on two components:
 - Hard scattering process \Rightarrow NNLO pQCD.
 - Parton Distribution Function (PDF).
- Measurement of the cross section have a high sensitivity to the PDF
- Due to unique coverage 2 < y < 5 LHCb probes the Q² - x region not covered by other experiments.

Selection

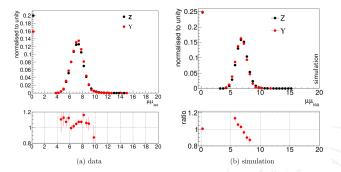
- Main topic of Nicolas PhD.
- Analysis based on 2011 data set.
- Trigger:
 - \circ LO_LODiMuonDecision,
 - Hlt1DiMuonHighMassDecision,
 - Hlt2DiMuonDY(3,4)Decision
- Stripping:
 - StrippingDY2MuMuLine(3,4)
- Selection:
 - $2 < η^{\mu} < 4.5,$ $○ p^{\mu} > 10 \text{ GeV},$ $○ p_T^{\mu} > 3 \text{ GeV},$ $○ \chi_{vtx}^{2,\mu\mu} < 5,$ ○ 10 < m(uu) ≤ 120.6
 - $\circ 10 < m(\mu\mu) < 120 \text{ GeV}.$


Isolation

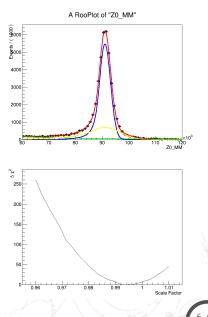
- Drell-Yan unfortunately do not peak in mass —» need another variable to control the purity.
- Find mass independent isolation variable such that the signal template can be determined from data.
- We define an isolation variable:

$$\mu_{\rm iso} = \log(p_T^{cone}(\mu, 0.5) - p_T^{cone}(\mu, 0.1))$$

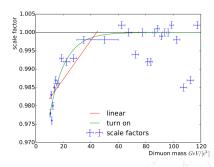
• For two muons we take the maximum of the two isolations:


$$\mu\mu_{\rm iso} = \max(\mu_{\rm iso}^+, \mu_{\rm iso}^-)$$

Marcin Chrząszcz, Katharina Müeller (UZH)


Isolation mass dependence

• Unfortunately the $\mu\mu_{iso}$ is showing some mass dependence:

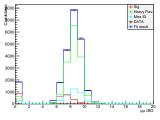

Signal template

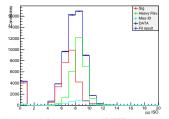
- We do not want to use MC for determination of the signal μμ_{iso} template.
- We adopted a data driven procedure:
 - The template is taken from data and scaled to account for $\mu\mu_{iso}$ mass dependence.
 - Take the Splot $Z \rightarrow \mu\mu$ from data and multiply it by the scale factor determined from minimalising the χ^2 between MC Z and DY in particular region.

Signal template - Summary

- We are investigating the impact on the analysis for the different approaches
- For now it looks like the results do not change with using different signal templates.
- Because templates are data driven we need to ensure a large statistics in each of the $m_{\mu\mu}$, y bins, because of this the last y bin is larger then the rest.

Backgrounds


- There are two sources of backgrounds:
 - Heavy flavour decays.
 - Mis-ID.
- For fitting the $\mu\mu_{iso}$ we need to know both the signal and background distribution.
- Background templates can be determined from data


 - Heavy flavour decays: Requiring the $\chi^{2,\mu\mu}_{vtx} > 16$
 - \hookrightarrow For cross-check IP > 5 mm
 - Miss-ID:
 - \hookrightarrow Require that both muons have the same sign.
 - \hookrightarrow For cross-check take the minimum bias stripping line.

Over all fits

- Using the above 3 mentioned templates the fits converge without any problems.
- The higher one goes in mass the cleaner the signal is.

Mass bin	Purity
$[40, 60] { m GeV}$	0.879 ± 0.019
[30, 40] GeV	0.754 ± 0.015
[25, 30] GeV	0.657 ± 0.011
[20, 25] GeV	0.507 ± 0.008
[17.5, 20] GeV	0.402 ± 0.007
$[15, 17.5] { m GeV}$	0.316 ± 0.006

Cross section calculations

• To calculate the cross section the luminosity will be used:

$$\sigma = \frac{\varrho f^{\mathrm{MIG}}}{\mathcal{L}\varepsilon^{\mathrm{SEL}}} \sum \frac{1}{\varepsilon^{\mathrm{TRIG}\varepsilon^{\mathrm{MUID}}\varepsilon^{\mathrm{GEC}\varepsilon^{\mathrm{TRACK}}}},$$

where

- ϱ signal fraction from the fit.
- f^{MIG} correction to bin-bin migration.
- \mathcal{L} integrated luminosity.
- + $\varepsilon^{\rm SEL}$ efficiency on the vertex requirement.
- $\varepsilon^{\rm MUID}$ muon identification efficiency.
- $\varepsilon^{\rm GEC}$ global event cut efficiency.
- $\varepsilon^{\text{TRACK}}$ tracking efficiency.

Cross section calculations

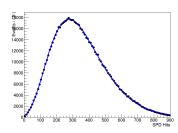
• To calculate the cross section the luminosity will be used:

$$\sigma = \frac{\varrho f^{\mathrm{MIG}}}{\mathcal{L}\varepsilon^{\mathrm{SEL}}} \sum \frac{1}{\varepsilon^{\mathrm{TRIG}\varepsilon^{\mathrm{MUID}}\varepsilon^{\mathrm{GEC}\varepsilon}\mathrm{TRACK}}},$$

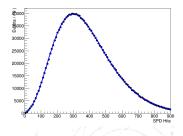
where

- ϱ signal fraction from the fit.
- f^{MIG} correction to bin-bin migration.
- \mathcal{L} integrated luminosity.
- $\varepsilon^{\rm SEL}$ efficiency on the vertex requirement.
- + $\varepsilon^{\rm MUID}$ muon identification efficiency.
- $\varepsilon^{\rm GEC}$ global event cut efficiency.
- $\varepsilon^{\rm TRACK}$ tracking efficiency.

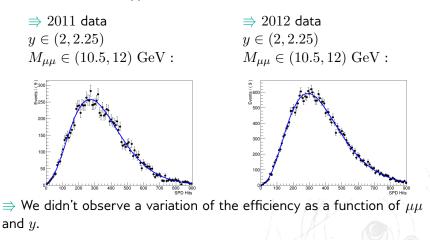
\Rightarrow Done

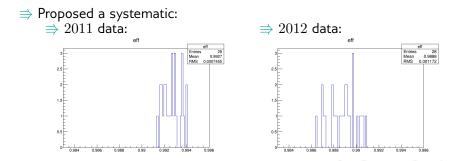

 \Rightarrow Evaluated using MC sample:

2011 MagDown	0.21320 ± 0.00014
$2011 \; MagUp$	0.21306 ± 0.00014
2012 MagDown	0.20402 ± 0.00013
$2012 \; MagUp$	0.20372 ± 0.00013


- \Rightarrow Good agreement between polarities!
- $\Rightarrow 2012$ efficiency is lower then the 2011.
- \Rightarrow Will merge the polarities:

\Rightarrow Evaluated on data directly, by fitting the $\Gamma({\rm SPDHits})$ to data:





 \Rightarrow 2011 data:

 \Rightarrow Testing the $y - M_{\mu\mu}$ dependence:

 \Rightarrow Suggest the RMS as small systematic.

¹⁵/16

 \Rightarrow The analysis was delayed due to lack of my time :(

 \Rightarrow I have stooped teaching so I expect much more time to continue this.

 \Rightarrow The remaining corrections could be taken from the $Z^0 \rightarrow \mu \mu$ analysis.

Backup

Marcin Chrząszcz, Katharina Müeller (UZH)