Magnet Stations for LHCb

M. Bettler¹, P. Billoir², M. Chrzaszcz³, C. Da Silva⁴, M. Martinelli⁵

¹ CERN, ² CNRS, ³ UZH, ⁴ LANL, ⁵ EPFL

TTFU meeting, Elba, May 30, 2017

Outline

- ⇒ Introduction
- ⇒ We will review the effect of an improved tracking for specific channels:
- Prompt Charm decays
- $R(\Lambda_c^*)$
- R(D*)
- Multibody B decays
- Σ_b .
- B*.
- Gluon PDF.
- Spectroscopy.
- More stuff added during this workshop.
- ⇒ Outlook

The idea

- ⇒ Tracks with hits in the vertex locator and the TT/UT and not in the Tstations: UPSTREAM tracks.
- ⇒ Those are bend outside of the T-stations acceptance by the magnetic field because of their low-momentum.
- ⇒ The reduced amount of field between the VELO and the TT, means that their momentum is computed with a large uncertainty.

$$\Delta p/p = 20-25\%$$
 current, $\Delta p/p = 15-20\%$ upgrade

Proposal

 \Rightarrow Original idea comes from Sheldon Stone, Paolo Gandini, Liming Zhang: [Tuesday meeting Sept 2nd 2014]

- \Rightarrow It is outside the LHCb acceptancen!! No X_0 added.
- \Rightarrow No need to have a high resolution. $\mathcal{O}(1\text{mm})$ should be enough.
- ⇒ See Maurizio slides for details.

Proposal

The study

- \Rightarrow Take the Gauss v50r0 for upgrade.
- \Rightarrow Simulate the particle gun.
- ⇒ Decays particles with EvtGen.
- ⇒ Put for now a plates in the Magnet (and beyond) and see where the particles hit them.
- $\Rightarrow \nu = 7.6.$

Prompt charm decays

 \Rightarrow Study the prompt production: $D^* \to D(\pi K)\pi_{\text{slow}}$.

- ⇒ The study is based on two type of cases:
- Slow π hits UT + FT and K, π in UT + FT
- Slow π hits UT + MS and K, π in UT + FT
- ⇒ The gain in terms of statistics:

$$gain = 20.7\%$$

$\Lambda_b \to \Lambda_c^* \tau \nu$

- \Rightarrow Study the LUV in: $\Lambda_b \to \Lambda_c^* au
 u$
- \Rightarrow The study is based on two type of cases:
- • Two slow π hits UT + FT and p, K, π in UT + FT
- One slow π hits UT + MS(FT) and p, K, π in UT + FT
- Two slow π hits UT + MS and p, K , π in UT + FT
- ⇒ The gain in terms of statistics:

$$gain = 60.0\%$$

$$B \rightarrow D^* \tau \nu$$

 \Rightarrow Study the LUV in: $B \rightarrow D^* \tau \nu$

- ⇒ The study is based on two type of cases:
- Slow π hits UT + FT and K. π in UT + FT
- Slow π hits UT + MS and K, π in UT + FT
- ⇒ The gain in terms of statistics:

$$gain = 26.0\%$$

$B \rightarrow nK$

 \Rightarrow Study the multi body decays: $B \rightarrow nK$:

 \Rightarrow Clearly a threshold effect, the less PHSP you have the more you gain.

$$\Sigma_b \to \Lambda_b \pi$$

 \Rightarrow The study is based on two type of cases:

- Slow π hits UT + FT and Λ_c , D_s in UT + FT
- Slow π hits UT + MS and Λ_c , D_s in UT + FT
- ⇒ The gain in terms of statistics:

$$gain = 29.0\%$$

Gluon PDF

⇒ The Gluon PDF saturates the low momentum transfer and fractional momentum.

Gluon PDF

Gluon PDF efficiency

 \Rightarrow If one looks at the efficiency for the low tracks, one finds where is the improvement:

⇒ For more details see Cesar Luiz da Silva; Tuesday Presentation

Spectroscopy

Idea from this workshop: $B \rightarrow \tau \tau$

 \Rightarrow LHCb has recently measured: $B_{s/d} \rightarrow au au$ arXiv::1703.02508

- ⇒ As a multibody decay it will probably have non-negligable gain from MS.
- \Rightarrow From preliminary studies $\mathcal{O}(24)\%$ gain.

Soft bomb events

- ⇒ All credits to Zoltan Ligeti.
- ⇒ Based on paper:arXiv::1612.00850

II. SOFT BOMB FRAMEWORK

A soft bomb event is generically represented by the process $pp \to \mathcal{B} + X$, where \mathcal{B} is a multi-particle state of soft SM particles with very large multiplicity $-N \sim 10^2$ to 10^4 – roughly spherically distributed in the center-of-mass frame of \mathcal{B} [47]. Such events may be generated by portals between the SM and a confining hidden valley, with appropriate fragmentation features and hadronization behavior.

 \Rightarrow The paper gives a lot of information how to select such events \rightarrow Need new MC study.

Outlook

- ⇒ The physics program of magnet stations is enormous.
- \Rightarrow For many channels, the MS are improving the efficiencies from
- $20 30\% (R(D^*))$ to 60%.
- \Rightarrow For other, such as the study of Gluon saturation, the MS are enabling the measurement.
- ⇒ MS help when little PHSP is available.
- \Rightarrow We are extending the studies for more and more decays in the future.

Since Guy started...

"The extent of your consciousness is limited only by your ability to love"

Since Guy started...

"The extent of your consciousness is limited only by your ability to love"

"The extent of your ACCEPTANCE is limited only by your MAGNET STATIONS"

Backup

