інср

Overview of recent experimental results in flavour physics

Marcin Chrząszcz mchrzasz@cern.ch

University of Zurich^{uzH}

on behalf of the LHCb collaboration, Universität Zürich,

Institute of Nuclear Physics, Polish Academy of Science

Pittsburgh, 3-6 May 2016

Flavour Physics, WHAT, WHY HOW?

- ⇒ WHAT: Quarks and leptons exists in 6 "flavors" (u,c,t,d,s,b) and (e, μ , τ , ν_e , ν_{μ} , ν_{τ}). ⇒ WHY:
- Flavour is the heart of SM. It involves 22 from 28 free parameters, like masses mixing and CP violation.
- Flavor physics loop processes (box and penguins) are sensitive to energy scales well beyond the ones of the accelerators, thanks to virtual contributions.

\rightarrow Indirect search for New Physics

- \Rightarrow HOW:
- Compare precise theoretical predictions with precise experimental measurements.
- LHCb, Belle, BaBar, ATLAS, CMS, NA62, BESIII, neutrinos experiments,...

Introduction to flavor physics

 \Rightarrow Masses and mixing of quarks have a common origin in the SM: The Yukawa interactions with the Higgs:

$$\mathcal{L}_{\text{Yukawa}} = -Y_{ij}^d \bar{Q'}_{Li} \phi d'_{Rj} - Y_{ij}^u \bar{Q'}_{Ri} \phi u'_{Rj}$$

 \Rightarrow The masses are generated using SSB by diagonalizing Y. The CKM matrix relats the mass eigenstates with the flavour eigenstates:

$$\begin{pmatrix} d \\ s \\ b \end{pmatrix}' = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}^{\text{phys}}$$

 \Rightarrow The charge current interactions between quarks are proportional to the CKM matrix elements:

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}}\bar{u}\gamma^{\mu}(1-\gamma^5)V_{CKM}d + \dots$$

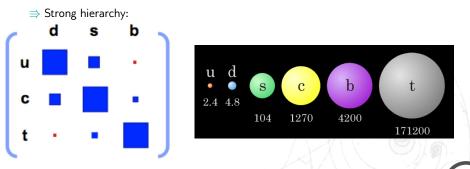
CP violation

 \Rightarrow The 3×3 CKM has build inside the CP violation:

$$V_{ij} \neq V_{ij}^* \Rightarrow (CP)\mathcal{L}_{CC} \neq \mathcal{L}^{\dagger}$$

 \Rightarrow In the Wolfenstein parametrization the CKM matrix reads:

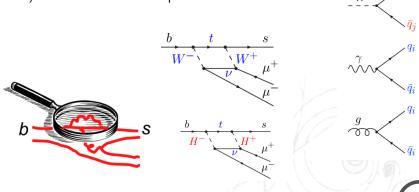
$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$



Marcin Chrząszcz (Universität Zürich, IFJ PAN)

Why rare decays?

- In SM allows only the charged interactions to change flavour.
 - Other interactions are flavour conserving.
- One can escape this constrain and produce $b \to s$ and $b \to d$ at loop level.
 - $\circ~$ This kind of processes are suppressed in SM \rightarrow Rare decays.
 - New Physics can enter in the loops.



/ 32

 W^{\pm}

Searching for New Physics

- \Rightarrow The fundamental questions:
- Why 3 generations? Why such hierarchy structure?
- Stability of the Higgs vacum? Dark Matter?
- Baryon asymmetry of the universe? CP in SM is to small!

Searching for New Physics

- \Rightarrow The fundamental questions:
- Why 3 generations? Why such hierarchy structure?
- Stability of the Higgs vacum? Dark Matter?
- Baryon asymmetry of the universe? CP in SM is to small!
- \Rightarrow Two ways to answer them:
- Direct searches: try to produce directly new real particles "on-shell", but we don't know their mass or lifetime and we are limited by the center-of-mass energy of accelerator.
- Indirect searches: study the effect of "off-shell" (virtual) particles within quantum loop. Compare precise theoretical predictions with precise experimental measurements. Not limited by the center-of-mass energy of accelerator. It happened in the past:
 - \circ CP violation in the Kaon system: existence of b and t quarks.
 - $\circ~$ Lack of observation of $K^0_S \to \mu \mu$: existence of c quark.
 - $\circ~$ Neutral weak currents: existence of Z boson.
- Very powerful tool!

Selected physics results:

- Rare Decays
 - $\begin{array}{l} \circ \ B^0_s/B^0_d \to \mu\mu \\ \circ \ B^0_d \to K^*\mu\mu, \ B^0_s \to \phi\mu\mu, \ \Lambda_b \to \Lambda\mu\mu. \end{array}$
- Tests of lepton universalities:

$$\circ R_k = \mathcal{B}(B^+ \to K^+ \mu \mu) / \mathcal{B}(B^+ \to K^+ ee)$$

$$\circ R(D), R(D^*)$$

- $(g-2)_{\mu}$
- CP violation:
 - $\circ \ \gamma$ angle.
 - \circ CP violation in B_d^0 and B_s^0 .
 - CP violation in charm.
 - $\circ~$ CP violation in kaons.
 - $\circ \ V_{ub}.$

Heavy flavor experiments

Marcin Chrząszcz (Universität Zürich, IFJ PAN)

Overview of recent experimental results in flavour physics

⁸/₃₂

Rare decays

Marcin Chrząszcz (Universität Zürich, IFJ PAN)

Overview of recent experimental results in flavour physics

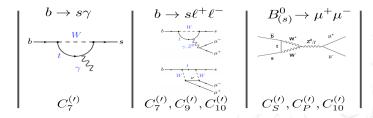
⁹/₃₂

Tools

• Operator Product Expansion and Effective Field Theory

$$H_{eff} = -\frac{4G_f}{\sqrt{2}}VV'^* \sum_{i} \left[\underbrace{\underbrace{C_i(\mu)O_i(\mu)}_{\text{left-handed}} + \underbrace{C_i'(\mu)O_i'(\mu)}_{\text{right-handed}}\right], \qquad \begin{array}{c} \stackrel{\text{i=1,2}}{\underset{i=3-6,8}{\text{Gluon penguin}}} \\ \stackrel{\text{i=3-6,8}}{\underset{i=9.10}{\text{FW penguin}}} \\ \stackrel{\text{i=9,10}}{\underset{i=9}{\text{W penguin}}} \\ \stackrel{\text{i=9,10}}{\underset{i=9}{\text{W$$

where C_i are the Wilson coefficients and O_i are the corresponding effective operators.



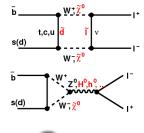
 $B^0 o \mu^+ \mu^-$

 Clean theoretical prediction, GIM and helicity suppressed in the SM:

•
$$\mathcal{B}(B^0_s \to \mu^- \mu^+) = (3.65 \pm 0.23) \times 10^{-9}$$

•
$$\mathcal{B}(B^0 \to \mu^- \mu^+) = (1.06 \pm 0.09) \times 10^{-10}$$

- Sensitive to contributions from scalar and pesudoscalar couplings.
- Probing: MSSM, higgs sector, etc.
- In MSSM: ${\cal B}(B^0_s\to\mu^-\mu^+)\sim {\rm tg}^6\,\beta/m_A^4$

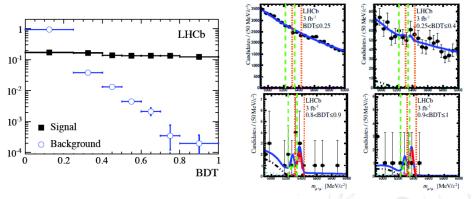


/ 32

$B^0 \rightarrow \mu^+ \mu^-$ searches

 $^{12}/_{32}$

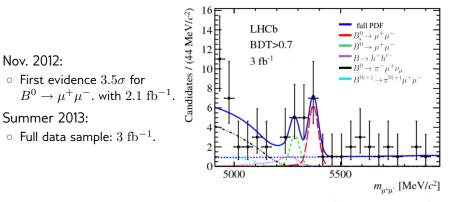
 Background rejection power is a key feature of rare decays → use multivariate classifiers (BDT) and strong PID.



• Normalize the BF to $B^+ \to J/\psi(\mu\mu)K^+$ and $B^0 \to K\pi$.

$B^0 \rightarrow \mu^+ \mu^-$ Results

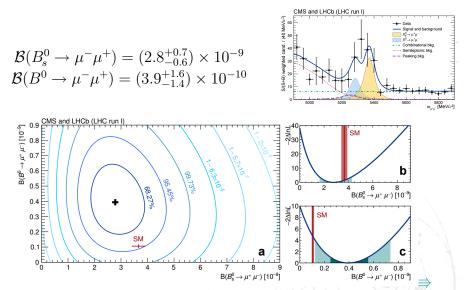
Nov. 2012:



- Measured BF: $\mathcal{B}(B^0_s \to \mu^- \mu^+) = (2.9^{+1.1}_{-1.0}(stat.)^{+0.3}_{-0.1}(syst.)) \times 10^{-9}$
- 4.0σ significance!
- $\mathcal{B}(B^0 \to \mu^- \mu^+) < 7 \times 10^{-10}$ at 95% CL
- CMS result: PRL 111 (2013) 101805

LHCb+CMS Combination

Nature 522 (2015) 68



$2.3 \; \sigma$ compatibility with SM!

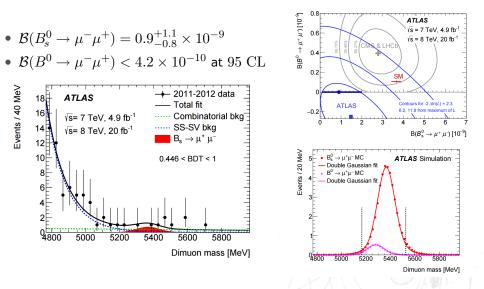
Marcin Chrząszcz (Universität Zürich, IFJ PAN)

4/32

ATLAS enters the game

arXiv:1604.04263

 $^{15}/_{32}$



Overview of recent experimental results in flavour physics

Marcin Chrząszcz (Universität Zürich, IFJ PAN)

$B_d^0 \to K^* \mu \mu$

⇒ The decay of $B_d^0 \to K^* \mu \mu$ has number of angular observables that are sensitive to different Wilson coefficients: $C_7^{(\prime)}$, $C_9^{(\prime)}$, $C_{10}^{(\prime)}$. ⇒ The complete angular expression is given by:

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1-F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L}\cos^2\theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2\theta_K\cos2\theta_\ell \right]$$
$$- F_\mathrm{L}\cos^2\theta_K\cos2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos2\phi + S_4\sin2\theta_\ell\cos\varphi + S_4\sin2\theta_\ell\cos\varphi + S_5\sin2\theta_K\sin^2\theta_\ell\cos\varphi + S_6\sin^2\theta_K\cos\varphi + S_6\sin^2\theta_K\cos\varphi + S_6\sin^2\theta_K\sin^2\theta_\ell\sin\varphi + S_6\sin^2\theta_K\sin^2\theta_\ell\sin\varphi + S_8\sin^2\theta_K\sin^2\theta_\ell\sin\varphi \right]$$

 \Rightarrow Furthermore, one can construct a form factor free observables:

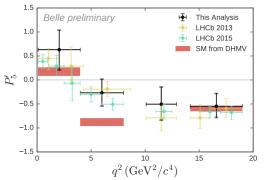
$$P_5' = \frac{S_5}{F_L(1 - F_L)}$$

- \Rightarrow Analysis performed with 3 methods:
- Likelihood fit.
- Method of moments.
- Amplitudes fit.

Marcin Chrząszcz (Universität Zürich, IFJ PAN)

$B^0_d \rightarrow K^* \mu \mu$ results

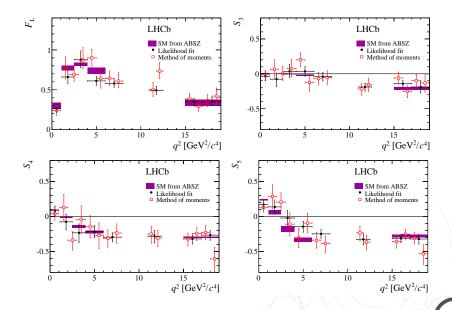
arxiv:1604.04042



- Tension with 3 fb⁻¹ gets confirmed!
- two bins both deviate by 2.8σ from SM prediction.
- Result compatible with previous results and Belle!
- SM: JHEP12(2014)125

$\overline{B^0_d \to K^* \mu \mu}$ results

JHEP 02 (2016) 104

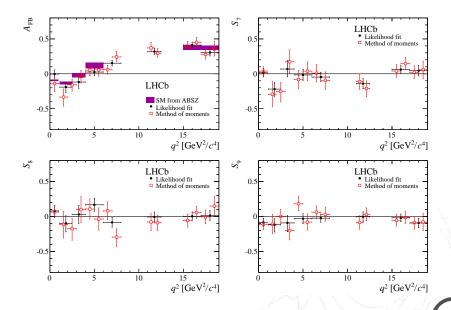


Overview of recent experimental results in flavour physics

¹⁸/₃₂

$\overline{B^0_d \to K^* \mu \mu}$ results

JHEP 02 (2016) 104



Marcin Chrząszcz (Universität Zürich, IFJ PAN)

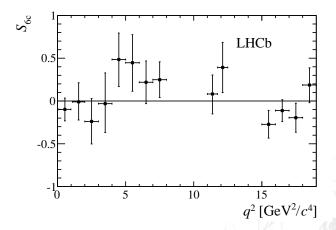
Overview of recent experimental results in flavour physics

¹⁸/₃₂

$B_d^0 \to K^* \mu \mu$ results

JHEP 02 (2016) 104

 \Rightarrow Method of Moments allowed us to measure for the first time a new observable:



 \Rightarrow LHCb also measured the CP asymmetries with Method of Moments and the likelihood fit that are consistent with SM

Marcin Chrząszcz (Universität Zürich, IFJ PAN)

⁸/32

Compatibility with SM

JHEP 02 (2016) 104

01.0

⇒ Use EOS software package to test compatibility with SM. ⇒ Perform the χ^2 fit to the measured:

$$F_L, A_{FB}, S_{3,...,9}.$$

ズ

 $\Rightarrow \text{Float a vector coupling:} \\ \Re(C_9).$

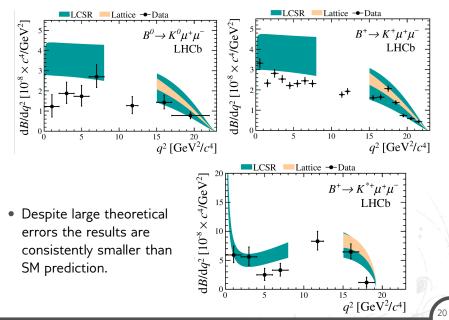
 \Rightarrow Best fit is found to be 3.4 σ away from the SM.

$$\Delta \Re(C_9) \equiv \Re(C_9)^{\text{III}} - \Re(C_9)^{\text{SM}} = -1.03$$

C.

BF of $B \to K^{*\pm} \mu \mu$

JHEP 07 (2012) 133

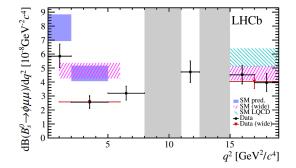


Marcin Chrząszcz (Universität Zürich, IFJ PAN)

Overview of recent experimental results in flavour physics

'/32

JHEP09 (2015) 179

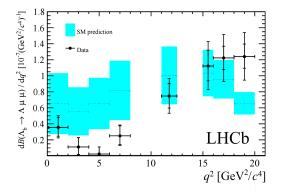


- Last years LHCb measurement.
- Suppressed by $\frac{f_s}{f_d}$.
- Cleaner because of narrow ϕ resonance.
- 3.3σ deviation in SM in the $1 6 GeV^2$ bin.

JHEP 06 (2015) 115

²²/₃₂

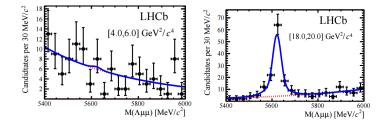
BF of $\Lambda_{\!b} \to \Lambda \mu \mu$



- Last years LHCb measurement.
- In total ~ 300 candidates in data set.
- Decay not present in the low q^2 .

BF of $\Lambda_b \to \Lambda \mu \mu$

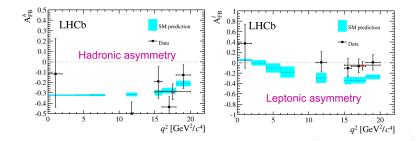
 $^{22}/_{32}$



- Last years LHCb measurement.
- In total ~ 300 candidates in data set.
- Decay not present in the low q^2 .

Angular analysis of $\Lambda_b \rightarrow \Lambda \mu \mu$

• For the bins in which we have $> 3 \sigma$ significance the forward backward asymmetry for the hadronic and leptonic system.



- A_{FB}^{H} is in good agreement with SM.
- A_{FB}^{ℓ} always in above SM prediction.

JHEP 06 (2015) 115

32

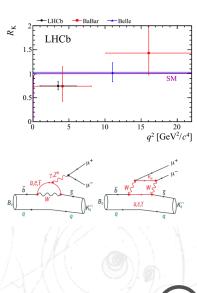
Lepton Universality tests

Marcin Chrząszcz (Universität Zürich, IFJ PAN)

Overview of recent experimental results in flavour physics

Lepton universality test

- Does the NP couple equally to all flavours? $R_{\rm K} = \frac{\int_{q^2=1}^{q^2=6\,{\rm GeV}^2/c^4} ({\rm d}\mathcal{B}[B^+ \to K^+\mu^+\mu^-]/{\rm d}q^2){\rm d}q^2}{\int_{q^2=1}^{q^2=6\,{\rm GeV}^2/c^4} ({\rm d}\mathcal{B}[B^+ \to K^+e^+e^-]/{\rm d}q^2){\rm d}q^2} = 1 \pm \mathcal{O}(10^{-3}) .$
- Challenging analysis due to bremsstrahlung.
- Migration of events modeled by MC.
- Correct for bremsstrahlung.
- Take double ratio with $B^+ \rightarrow J/\psi K^+$ to cancel systematics.
- In 3fb^{-1} , LHCb measures: $R_K = 0.745^{+0.090}_{-0.074}(stat.)^{+0.036}_{-0.036}(syst.)$
- Consistent with SM at 2.6σ .

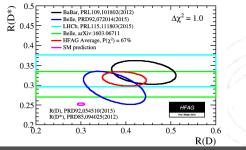


More Lepton universality tests

• There is one other LUV decay recently measured by LHCb.

•
$$R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \mu \nu)}$$

- Clean SM prediction: $R(D^*) = 0.252(3)$, PRD 85 094025 (2012)
- • LHCb result: $R(D^*)=0.336\pm 0.027\pm 0.030,$ HFAG average: $R(D^*)=0.322\pm 0.022$
- 4.0σ discrepancy wrt. SM.



Marcin Chrząszcz (Universität Zürich, IFJ PAN)

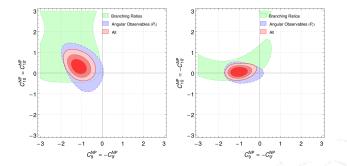
Overview of recent experimental results in flavour physics

Explanation of anomalies

arXiv:1510.04239

32

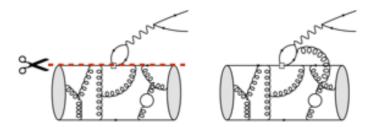
 \Rightarrow Thanks to S. Descotes-Genon, L.Hofer, J.Matias, J.Virto we have a global fit to the anomalies.



⇒ The fit prefer a modification of C_9 Wilson coefficient with a value of $C_9^{NP} = -1$, with a significance over 4σ . ⇒ Many theories link might accommodate the observed deviations.

Explanation of anomalies

- We are not there yet!
- There might be something not taken into account in the theory.
- Resonances ($J\!/\!\psi$, $\psi(2S)$) tails can mimic NP effects.
- There might be some non factorizable QCD corrections. "However, the central value of this effect would have to be significantly larger than expected on the basis of existing estimates" D.Straub, 1503.06199.



 $(g-2)\mu$

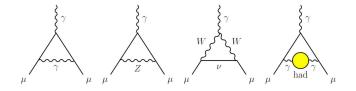
Marcin Chrząszcz (Universität Zürich, IFJ PAN)

Overview of recent experimental results in flavour physics

Muon anomalous magnetic moment $(g-2)_{\mu}$

 \Rightarrow Dirac equations predict a muon magnetic moment $\vec{M} = g_{\mu} \frac{e}{2m_{\mu}} \vec{S}$ with a gyromagnetic ratio $g_{\mu} = 2$. Experimentally $g_{\mu} > 2$.

 \Rightarrow This anomaly a_{μ} arises from calculable quantum fluctuations:

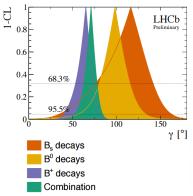


 $\Rightarrow \mathsf{SM} \text{ value } a_{\mu}^{\mathrm{SM}} = (116591803 \pm 49) \times 10^{-11} \text{ [PDG 2014]}$ $\Rightarrow \mathsf{Experiment: } a_{\mu}^{\mathrm{E821}} = (116592091 \pm 63) \times 10^{-11} \text{ [PDG 2014]}$ $\Rightarrow \mathsf{Difference: } a_{\mu}^{\mathrm{E821}} - a_{\mu}^{\mathrm{SM}} = (288 \pm 80) \times 10^{-11} \Leftrightarrow 3.6 \ \sigma!$ $\Rightarrow \mathsf{Underestimated uncertainties? \mathsf{SUSY? NP?} }$ $\Rightarrow \mathsf{Fermilabs E989 should futher reduce the experimental error to } \pm 16 \times 10^{-11}.$

γ angle

$$\Rightarrow \gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) \approx \arg\left(-\frac{V_{ub}^*}{V_{cb}^*}\right) \text{ is the last well known CKM angles.}$$

- \Rightarrow Can be determined by:
- Tree level processes, nearly insensitive to NP. Act as reference. Negligible theoretical uncertainty, using B → DK.
- Loop processes, sensitive to NP.
- ⇒ Comparing the two can reveal NP!



- \Rightarrow The LHCb combinations leads to: $\gamma = 70.9^{+7.1}_{-8.5}$.
- \Rightarrow Improved by $2^{\rm deg}$ compared to our previous result!

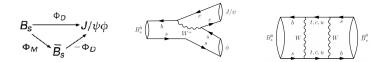
32

- ⇒ Other B-factories have 2 times larger errors:
- BaBar: $\gamma = (70 \pm 18)^{\text{deg}}$
- Belle: $\gamma = (73^{+18}_{-15})^{\text{deg}}$

Marcin Chrząszcz (Universität Zürich, IFJ PAN)

Mixing induced CPV in B_s^0

 \Rightarrow Interference between B^0_s decaying to $J/\psi\phi$ either directly or by oscillations gives rise to CP violation phase: $\phi_s^{J/\psi\phi}$



 $\begin{array}{l} \Rightarrow \text{ In the Sm } \phi_s \approx -2\beta + s = -(0.0376^{+0.0007}_{-0.0008}) \text{ rad, where } \beta_s = \\ \arg\left(-\frac{V_{ts}V^*_{tb}}{V_{cs}V^*_{cb}}\right) \\ \Rightarrow \text{ At the leading order the same phase is expected } B^0_s \rightarrow D_s D_s \text{ and} \end{array}$

- $B \to J/\psi \pi \pi$.
- \Rightarrow NP can enter in the B_s^0 mixing!
- \Rightarrow Measured by simultaneous fit to B_s^0 and $\bar{B_s^0}$ decay rates:

$$\frac{\mathrm{d}^{4}\Gamma(B_{s}^{0}\to J/\psi\phi)}{\mathrm{d}t\,\mathrm{d}\cos\theta_{\mu}\,\mathrm{d}\varphi_{h}\,\mathrm{d}\cos\theta_{K}}=f(\phi_{s},\Delta\Gamma_{s},\Gamma_{s},\Delta m_{s},\mathcal{M}(B_{s}^{0}),|\mathcal{A}_{\perp}|,|\mathcal{A}_{\parallel}|,|\mathcal{A}_{S}|,\delta_{\perp},\delta_{\parallel},\ldots)$$

Backup

Marcin Chrząszcz (Universität Zürich, IFJ PAN)

Overview of recent experimental results in flavour physics

³³/₃₂

Theory implications

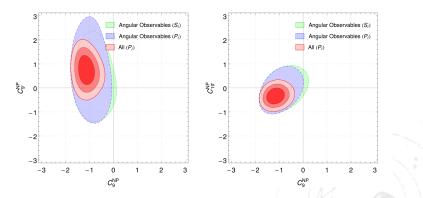
Coefficient	Best fit	1σ	3σ	$\mathrm{Pull}_{\mathrm{SM}}$	p-value (%)
$\mathcal{C}_7^{\mathrm{NP}}$	-0.02	[-0.04, -0.00]	[-0.07, 0.04]	1.1	16.0
$\mathcal{C}_9^{\mathrm{NP}}$	-1.11	[-1.32, -0.89]	[-1.71, -0.40]	4.5	62.0
$\mathcal{C}_{10}^{\mathrm{NP}}$	0.58	[0.34, 0.84]	[-0.11, 1.41]	2.5	25.0
$\mathcal{C}^{\mathrm{NP}}_{7'}$	0.02	[-0.01, 0.04]	[-0.05, 0.09]	0.7	15.0
$\mathcal{C}^{\mathrm{NP}}_{9'}$	0.49	[0.21, 0.77]	[-0.33, 1.35]	1.8	19.0
$\mathcal{C}^{\mathrm{NP}}_{10'}$	-0.27	[-0.46, -0.08]	[-0.84, 0.28]	1.4	17.0
$\mathcal{C}_9^{\rm NP}=\mathcal{C}_{10}^{\rm NP}$	-0.21	[-0.40, 0.00]	[-0.74, 0.55]	1.0	16.0
$\mathcal{C}_9^{\rm NP} = -\mathcal{C}_{10}^{\rm NP}$	-0.69	[-0.88, -0.51]	[-1.27, -0.18]	4.1	55.0
$\mathcal{C}_{9'}^{\rm NP}=\mathcal{C}_{10'}^{\rm NP}$	-0.09	[-0.35, 0.17]	[-0.88, 0.66]	0.3	14.0
$\mathcal{C}_{9'}^{\rm NP} = -\mathcal{C}_{10'}^{\rm NP}$	0.20	[0.08, 0.32]	[-0.15, 0.56]	1.7	19.0
$\mathcal{C}_9^{\rm NP} = -\mathcal{C}_{9'}^{\rm NP}$	-1.09	[-1.28, -0.88]	[-1.62, -0.42]	4.8	72.0
$ \begin{aligned} \mathcal{C}_9^{\mathrm{NP}} &= -\mathcal{C}_{10}^{\mathrm{NP}} \\ &= -\mathcal{C}_{9'}^{\mathrm{NP}} = -\mathcal{C}_{10'}^{\mathrm{NP}} \end{aligned} $	-0.68	[-0.49, -0.49]	[-1.36, -0.15]	3.9	50.0
$\begin{aligned} \mathcal{C}_{9}^{\mathrm{NP}} &= -\mathcal{C}_{10}^{\mathrm{NP}} \\ &= \mathcal{C}_{9'}^{\mathrm{NP}} = -\mathcal{C}_{10'}^{\mathrm{NP}} \end{aligned}$	-0.17	[-0.29, -0.06]	[-0.54, 0.18]	1.5	18.0

Table 2: Best-fit points, confidence intervals, pulls for the SM hypothesis and p-values for different one-dimensional NP scenarios.

Marcin Chrząszcz (Universität Zürich, IFJ PAN)

If not NP?

- How about our clean P_i observables?
- The QCD cancel as mentioned only at leading order.
- Comparison to normal observables with the optimised ones.



Transversity amplitudes

 \Rightarrow One can link the angular observables to transversity amplitudes

$$\begin{split} J_{1s} &= \frac{(2+\beta_{\ell}^2)}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^R|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right] + \frac{4m_{\ell}^2}{q^2} \operatorname{Re} \left(A_{\perp}^L A_{\perp}^{R*} + A_{\parallel}^L A_{\parallel}^{R*} \right) \,, \\ J_{1c} &= |A_0^L|^2 + |A_0^R|^2 + \frac{4m_{\ell}^2}{q^2} \left[|A_t|^2 + 2\operatorname{Re}(A_0^L A_0^{R*}) \right] + \beta_{\ell}^2 |A_S|^2 \,, \\ J_{2s} &= \frac{\beta_{\ell}^2}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^R|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right] \,, \qquad J_{2c} = -\beta_{\ell}^2 \left[|A_0^L|^2 + |A_0^R|^2 \right] \,, \\ J_3 &= \frac{1}{2} \beta_{\ell}^2 \left[|A_{\perp}^L|^2 - |A_{\parallel}^R|^2 + |A_{\perp}^R|^2 - |A_{\parallel}^R|^2 \right] \,, \qquad J_4 = \frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[\operatorname{Re}(A_0^L A_{\parallel}^{L*} + A_0^R A_{\parallel}^{R*}) \right] \,, \\ J_5 &= \sqrt{2} \beta_{\ell} \left[\operatorname{Re}(A_0^L A_{\perp}^{L*} - A_0^R A_{\perp}^{R*}) - \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Re}(A_{\parallel}^L A_{S}^* + A_{\parallel}^{R*} A_{S}) \right] \,, \\ J_{6s} &= 2\beta_{\ell} \left[\operatorname{Re}(A_{\parallel}^L A_{\perp}^{L*} - A_{\parallel}^R A_{\perp}^{R*}) \right] \,, \qquad J_{6c} = 4\beta_{\ell} \, \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Re}(A_0^L A_{S}^* + A_0^{R*} A_{S}) \,. \end{split}$$

$$J_7 \quad = \quad \sqrt{2}\beta_\ell \left[\mathrm{Im}(\mathbf{A}_0^{\mathrm{L}}\mathbf{A}_{\parallel}^{\mathrm{L}*} - \mathbf{A}_0^{\mathrm{R}}\mathbf{A}_{\parallel}^{\mathrm{R}*}) + \frac{\mathbf{m}_\ell}{\sqrt{\mathsf{q}^2}} \, \mathrm{Im}(\mathbf{A}_{\perp}^{\mathrm{L}}\mathbf{A}_{\mathrm{S}}^* - \mathbf{A}_{\perp}^{\mathrm{R}*}\mathbf{A}_{\mathrm{S}})) \right],$$

 $J_8 = \frac{1}{\sqrt{2}} \beta_\ell^2 \left[\operatorname{Im}(\mathbf{A}_0^{\mathbf{L}} \mathbf{A}_\perp^{\mathbf{L}} + \mathbf{A}_0^{\mathbf{R}} \mathbf{A}_\perp^{\mathbf{R}}) \right] , \qquad \qquad J_9 = \beta_\ell^2 \left[\operatorname{Im}(\mathbf{A}_\parallel^{\mathbf{L}*} \mathbf{A}_\perp^{\mathbf{L}} + \mathbf{A}_\parallel^{\mathbf{R}*} \mathbf{A}_\perp^{\mathbf{R}}) \right] ,$

Link to effective operators

 \Rightarrow So here is where the magic happens. At leading order the amplitudes can be written as (soft form factors):

$$A_{\perp}^{L,R} = \sqrt{2}Nm_B(1-\hat{s}) \left[(\mathcal{C}_9^{\rm eff} + \mathcal{C}_9^{\rm eff'}) \mp (\mathcal{C}_{10} + \mathcal{C}'_{10}) + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\rm eff} + \mathcal{C}_7^{\rm eff'}) \right] \xi_{\perp}(E_{K^*})$$

$$A_{\parallel}^{L,R} \quad = \quad -\sqrt{2}Nm_B(1-\hat{s})\left[(\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}}) \right] \xi_{\perp}(E_{K^*})$$

$$A_0^{L,R} = -\frac{Nm_B(1-\hat{s})^2}{2\hat{m}_{K^*}\sqrt{\hat{s}}} \left[(\mathcal{C}_9^{\rm eff} - \mathcal{C}_9^{\rm eff\prime}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_b (\mathcal{C}_7^{\rm eff} - \mathcal{C}_7^{\rm eff\prime}) \right] \xi_{\parallel}(E_{K^*}),$$

where $\hat{s}=q^2/m_B^2$, $\hat{m}_i=m_i/m_B$. The $\xi_{\parallel,\perp}$ are the form factors.

Link to effective operators

 \Rightarrow So here is where the magic happens. At leading order the amplitudes can be written as (soft form factors):

$$A_{\perp}^{L,R} = \sqrt{2}Nm_{B}(1-\hat{s}) \left[(\mathcal{C}_{9}^{\text{eff}} + \mathcal{C}_{9}^{\text{eff}}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_{b}}{\hat{s}} (\mathcal{C}_{7}^{\text{eff}} + \mathcal{C}_{7}^{\text{eff}}) \right] \xi_{\perp}(E_{K^{*}})$$

$$A_{\parallel}^{L,R} = -\sqrt{2}Nm_B(1-\hat{s})\left[(\mathcal{C}_9^{\text{eff}} - \mathcal{C}_9^{\text{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}}(\mathcal{C}_7^{\text{eff}} - \mathcal{C}_7^{\text{eff}}) \right] \xi_{\perp}(E_{K^*})$$

$$A_0^{L,R} = -\frac{Nm_B(1-\hat{s})^2}{2\hat{m}_{K^*}\sqrt{\hat{s}}} \left[(\mathcal{C}_9^{\rm eff} - \mathcal{C}_9^{\rm eff\prime}) \mp (\mathcal{C}_{10} - \mathcal{C}'_{10}) + 2\hat{m}_b (\mathcal{C}_7^{\rm eff} - \mathcal{C}_7^{\rm eff\prime}) \right] \xi_{\parallel}(E_{K^*}),$$

where $\hat{s} = q^2/m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\parallel,\perp}$ are the form factors. \Rightarrow Now we can construct observables that cancel the ξ form factors at leading order:

$$P_5' = \frac{J_5 + J_5}{2\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}}$$

Mass modelling

⇒ The signal is modelled by a sum of two Crystal-Ball functions with common mean. ⇒ The background is a single exponential. ⇒ The base parameters are obtained from the proxy channel: $B_d^0 \rightarrow J/\psi(\mu\mu)K^*$. ⇒ All the parameters are fixed in the signal pdf.

 \Rightarrow Scaling factors for resolution are determined from MC.

 \Rightarrow In fitting the rare mode only the signal, background yield and the slope of the exponential is left floating.

 \Rightarrow We found 624 ± 30 candidates in the

most interesting $[1.1, 6.0]~{\rm GeV^2/c^4}$ region \Rightarrow The S-wave fraction is extracted using a and 2398 ± 57 in the full range $$\rm LASS\ model.$$ [1.1, 19.] ${\rm GeV^2/c^4}.$$

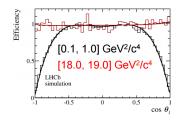
Detector acceptance

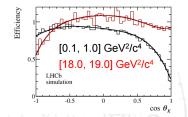
- Detector distorts our angular distribution.
- We need to model this effect.
- 4D function is used:

 $\epsilon(\cos\theta_l,\cos\theta_k,\phi,q^2) = \sum_{ijkl} P_i(\cos\theta_l) P_j(\cos\theta_k) P_k(\phi) P_l(q^2),$

where P_i is the Legendre polynomial of order i.

- We use up to $4^{th}, 5^{th}, 6^{th}, 5^{th}$ order for the $\cos \theta_l, \cos \theta_k, \phi, q^2$.
- The coefficients were determined using Method of Moments, with a huge simulation sample.
- The simulation was done assuming a flat phase space and reweighing the q² distribution to make is flat.

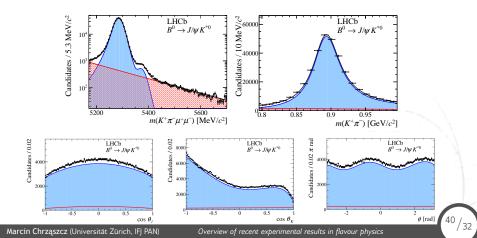




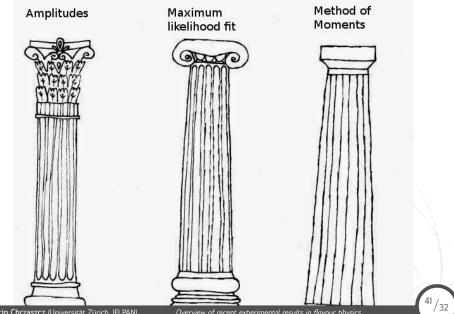
/ 32

Control channel

- We tested our unfolding procedure on $B \rightarrow J/\psi K^*$.
- The result is in perfect agreement with other experiments and our different analysis of this decay.



The columns of New Physics



Marcin Chrząszcz (Universität Zürich, IFJ PAN)

Overview of recent experimental results in flavour physics

$B_d^0 \to K^* \mu \mu$ results

 \Rightarrow In the maximum likelihood fit one could weight the events accordingly to the 1

 $\overline{\varepsilon(\cos\theta_l,\cos\theta_k,\phi,q^2)}$

 \Rightarrow Better alternative is to put the efficiency into the maximum likelihood fit itself:

$$\mathcal{L} = \prod_{i=1}^{N} \epsilon_i(\Omega_i, q_i^2) \mathcal{P}(\Omega_i, q_i^2) / \int \epsilon(\Omega, q^2) \mathcal{P}(\Omega, q^2) d\Omega dq^2$$

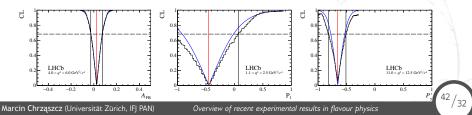
⇒ Only the relative weights matters!

 \Rightarrow The Procedure was commissioned with TOY MC study.

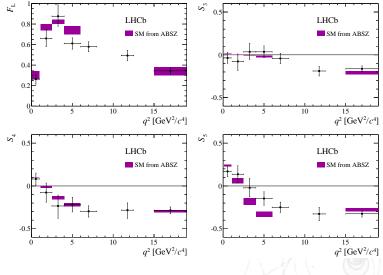
 \Rightarrow Use Feldmann-Cousins to determine the uncertainties.

 \Rightarrow Angular background component is modelled with 2^{nd} order Chebyshev polynomials, which was tested on the side-bands.

 \Rightarrow S-wave component treated as nuisance parameter.



Maximum likelihood fit - Results

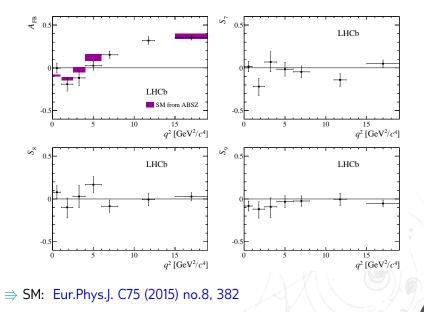


⇒ SM: Eur.Phys.J. C75 (2015) no.8, 382

Marcin Chrząszcz (Universität Zürich, IFJ PAN)

⁴³/₃₂

Maximum likelihood fit - Results



Marcin Chrząszcz (Universität Zürich, IFJ PAN)

⁴³/₃₂

Method of moments

 \Rightarrow See Phys.Rev.D91(2015)114012, F.Beaujean , M.Chrzaszcz, N.Serra, D. van Dyk for details.

 \Rightarrow The idea behind Method of Moments is simple: Use orthogonality of spherical harmonics, $f_j(\overrightarrow{\Omega})$ to solve for coefficients within a q^2 bin:

$$\int f_i(\overrightarrow{\Omega}) f_j(\overrightarrow{\Omega}) = \delta_{ij}$$

$$M_i = \int \left(\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2}\right) \frac{d^3(\Gamma + \bar{\Gamma})}{d\overrightarrow{\Omega}} f_i(\overrightarrow{\Omega}) d\Omega$$

 \Rightarrow Don't have true angular distribution but we "sample" it with our data. \Rightarrow Therefore: $\int \rightarrow \sum$ and $M_i \rightarrow \widehat{M}_i$

$$\hat{M}_i = \frac{1}{\sum_e \omega_e} \sum_e \omega_e f_i(\overrightarrow{\Omega}_e)$$

 \Rightarrow The weight ω accounts for the efficiency. Again the normalization of weights does not matter.

Amplitudes method

⇒ Fit for amplitudes as (continuous) functions of q^2 in the region: $q^2 \in [1.1.6.0] \text{ GeV}^2/\text{c}^4$. ⇒ Needs some Ansatz:

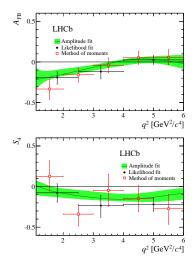
$$A(q^2) = \alpha + \beta q^2 + \frac{\gamma}{q^2}$$

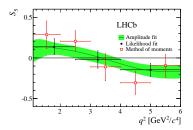
 \Rightarrow The assumption is tested extensively with toys.

- \Rightarrow Set of 3 complex parameters α, β, γ per vector amplitude:
- L, R, 0, \parallel , \perp , \Re , $\Im \rightarrow 3 \times 2 \times 3 \times 2 = 36$ DoF.
- Scalar amplitudes: +4 DoF.
- Symmetries of the amplitudes reduces the total budget to: 28.
- ⇒ The technique is described in JHEP06(2015)084, U. Egede, M. Patel, K.A. Petridis.
- \Rightarrow Allows to build the observables as continuous functions of q^2 :
- At current point the method is limited by statistics.
- In the future the power of this method will increase.

 \Rightarrow Allows to measure the zero-crossing points for free and with smaller errors than previous methods.

Amplitudes - results





Zero crossing points:

$q_0(S_4) < 2.65$	at 95% CL
$q_0(S_5) \in [2.49, 3.95]$	at $68\% \; CL$
$q_0(A_{FB}) \in [3.40, 4.87]$	at 68% CL

46/32