

Rare decays at LHCb

Marcin Chrzaszcz mchrzasz@cern.ch

University of Zurich^{#2#}

on behalf of the LHCb collaboration, Universität Zürich, Institute of Nuclear Physics, Polish Academy of Science

LHCP, Shanghai, 15-20 May 2016

Rare Decays at LHCb

Muonic B decays

 $\begin{array}{l} \Rightarrow & \text{Br } B_s^0/B_d^0 \to \mu\mu/\tau\tau. \\ \Rightarrow & \text{Br + Ang. } B \to K^*\mu\mu. \\ \Rightarrow & \text{Br + Ang. } B_s^0 \to \phi\mu\mu. \\ \Rightarrow & \text{Isospin } B \to K\mu\mu. \\ \Rightarrow & \text{CP asymmetry } B \to \pi\mu\mu. \end{array}$

Charm decays

 $\Rightarrow D \to \pi \pi \mu \mu$ $\Rightarrow D \to K \pi \mu \mu$ $\Rightarrow D \to e \mu.$

⇒ Enormous Physics program
 which is constantly expanding.
 ⇒ Will cover only part of the results.

LFU test

$$\Rightarrow B^{+} \rightarrow K^{+}\ell\ell$$

$$\Rightarrow B^{0}_{d} \rightarrow K^{*}\ell\ell$$

 \Rightarrow See G.Andreassi talk for LUV!!!

Strange decays

 $\Rightarrow K_{\rm S}^0 \to \mu\mu.$

Radiative decays

 \Rightarrow See H.Evans talk.

arXiv:1703.05747

$B_{s/d} \to \mu \mu$

⇒ Golden channel for LHCb. ⇒ Normalized to the $B \to K\pi$ and $B \to KJ/\psi$.

 \Rightarrow The selection is achived by BDT trained on MC and calibrated on data.

$$\Rightarrow \mathcal{B}(B_{s}^{0} \to \mu\mu) = (3.0 \pm 0.6^{+0.3}_{-0.2})10^{-9}$$

7.8 σ significant!

$$\Rightarrow \mathcal{B}(B^0_d o \mu \mu) < 3.4 imes 10^{-10}$$
, 90%CL

Effective lifetime

⇒ Sensitivity to non-scalar NP. ⇒ $\tau(B_s^0 \to \mu\mu) = 2.04 \pm 0.44 \pm 0.05 \text{ps}$

arXiv:1703.05747

$B_{s/d} \to \mu \mu$

⇒ Golden channel for LHCb. ⇒ Normalized to the $B \to K\pi$ and $B \to KJ/\psi$.

 \Rightarrow The selection is achived by BDT trained on MC and calibrated on data.

$$\Rightarrow \mathcal{B}(B_s^0 \to \mu\mu) = (3.0 \pm 0.6^{+0.3}_{-0.2})10^{-9}$$

7.8 σ significant!

$$\Rightarrow \mathcal{B}(\mathcal{B}^0_{\mathsf{d}}
ightarrow \mu \mu) < 3.4 imes 10^{-10}$$
, 90%CL

Effective lifetime \Rightarrow Sensitivity to non-scalar NP. $\Rightarrow \tau(B_s^0 \to \mu\mu) = 2.04 \pm 0.44 \pm 0.05 \text{ps}$

$B_{s/d} \to \tau \tau$

 \Rightarrow NP sensitivity enhanced due to the high τ mass.

 \Rightarrow More challenging: at least 2ν are escaping.

- \Rightarrow Selecting $au o 3\pi
 u$, o 9.31 %
- \Rightarrow Normalization channel:
- $B \rightarrow D(K\pi\pi)D_{s}(KK\pi).$
- \Rightarrow No peak in the *B* mass window \rightarrow fit the NN output.

J. High Energy Phys. 04 (2017) 029

$\Lambda_b \to p \pi \mu \mu$

- \Rightarrow BDT selection trained on MC
- \Rightarrow Normalized to $\Lambda_b \rightarrow p\pi J\!/\psi$
- ⇒ With futher QCD improvements we will be able to to measure $\frac{|V_{ts}|}{|V_{ts}|}$.

$\mathcal{B}(\Lambda_b \to p\pi\mu\mu) = (6.9 \pm 1.9 \pm 1.1^{+1.3}_{-1.0}) \times 10^{-8}$

Rare Decays at LHCb

Search for light scalars

⇒ Hidden sector models are gathering more and more attention.

 \Rightarrow Inflaton model: new scalar then mixes with the Higgs.

 \Rightarrow *B* decays are sensitive as the inflaton might be light.

⇒ Searched for long living particle χ produced in: $B \rightarrow \chi(\mu\mu)K$.

 \Rightarrow Analysis performed blindly as a peak search.

 \Rightarrow Light inflaton essentially ruled out:

Phys. Rev. D 95, 071101 (2017)

Marcin Chrzaszcz (Universität Zürich, IFJ PAN)

 $K_{S}^{0} \rightarrow \mu \mu$

 \Rightarrow *pp* collisions create enormous amount of strange mesons.

 \Rightarrow Can be used to search for $K_{\rm S}^0 \rightarrow \mu\mu$.

 \Rightarrow SM prediction:

 $\mathcal{B}(K_{\rm S}^0 \to \mu\mu) = (5.0 \pm 1.5) \times 10^{-12}$

 \Rightarrow Dominated by the long distance effects.

 \Rightarrow Bkg dominated by $K_{S}^{0} \rightarrow \pi\pi$.

⇒ No significant enhanced of signal has been observed and UL was set:

 $\begin{array}{l} \mathcal{B}(\textit{K}^{\rm 0}_{\rm S} \rightarrow \mu \mu) < 0.8(1.0) \times 10^{-9} \\ {\rm at} \; 90(95)\% \; {\rm CL} \end{array}$

JHEP 02 (2016) 104, CMS-PAS-BPH-15-008, ATLAS-CONF-2017-023, Phys. Rev. Lett. 118 (2017)

 $\Rightarrow B^0 \rightarrow K^* \mu^- \mu^+$ is a smoking gun for NP hunting!

 $B^0 \rightarrow K^* \mu^- \mu^+$ decay

⇒ Reach angular observables makes
 is sensitive to different NP models
 ⇒ In addition one can construct less
 form factor dependent observables:

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

 \Rightarrow In single analysis observed $3.4~\sigma$ discrepancy in the C_9 WC.

Branching fraction measurements of $B_s^0 \rightarrow \phi \mu \mu$

- Recent LHCb measurement, JHEP09 (2015) 179.
- Suppressed by $\frac{f_s}{f_d}$.
- Cleaner because of narrow ϕ resonance.
- 3.3σ deviation in SM in the $1 6 \mathrm{GeV}^2$ bin.
- Angular part in agreement with SM (S_5 is not accessible).

Theory implications of $b \rightarrow s\ell\ell$ JHEP 06 (2016) 092

- A fit prepared by S. Descotes-Genon, L. Hofer, J. Matias, J. Virto.
- The data can be explained by modifying the C_9 Wilson coefficient.
- Overall there is $> 4 \sigma$ discrepancy wrt. the SM prediction.

If not NP?

- We are not there yet!
- There might be something not taken into account in the theory.
- Resonances (J/ ψ , $\psi(2S)$) tails can mimic NP effects.
- There might be some non factorizable QCD corrections. "However, the central value of this effect would have to be significantly larger than expected on the basis of existing estimates" D.Straub, arXiv:1503.06199.

If not NP?

- We are not there yet!
- There might be something not taken into account in the theory.
- Resonances (J/ ψ , $\psi(2S)$) tails can mimic NP effects.
- There might be some non factorizable QCD corrections. "However, the central value of this effect would have to be significantly larger than expected on the basis of existing estimates" D.Straub, arXiv:1503.06199.

Measurement of phase difference

 \Rightarrow One could try to measure the phase difference between the resonances and the nonresonant amplitudes to see if the interference is large enough to explain the effects.

 \Rightarrow Measured firstly done for the decay $B \rightarrow K \mu \mu$.

 \Rightarrow The analysis based:

$$C_9^{\text{eff}} = C_9 + Y(q^2) = C_9 + \sum_j \eta_j e^{i\delta_i} A_j^{\text{res}}(q^2)$$

⇒ The amplitudes are modelled
 Briet-Wigner and Flatte functions.
 ⇒ Interference cannot explain the observed anomalies.

Conclusions

- Clear tensions wrt. SM predictions!
- Measurements cluster in the same direction.
- We are not opening the champagne yet!
- Still need improvement both on theory and experimental side.
- Time will tell if this is QCD+fluctuations or new Physics:

Conclusions

- Clear tensions wrt. SM predictions!
- Measurements cluster in the same direction.
- We are not opening the champagne yet!
- Still need improvement both on theory and experimental side.
- Time will tell if this is QCD+fluctuations or new Physics:

"... when you have eliminated all the Standard Model explanations, whatever remains, however improbable, must be New Physics." Prof. Joaquim Matias

Thank you for the attention!

Backup

¹⁵/₁₄

Theory implications

Coefficient	Best fit	1σ	3σ	$\mathrm{Pull}_{\mathrm{SM}}$	p-value (%)
$\mathcal{C}_7^{\mathrm{NP}}$	-0.02	[-0.04, -0.00]	[-0.07, 0.04]	1.1	16.0
$\mathcal{C}_9^{ m NP}$	-1.11	[-1.32, -0.89]	[-1.71, -0.40]	4.5	62.0
$\mathcal{C}_{10}^{\mathrm{NP}}$	0.58	[0.34, 0.84]	[-0.11, 1.41]	2.5	25.0
$\mathcal{C}^{\mathrm{NP}}_{7'}$	0.02	[-0.01, 0.04]	[-0.05, 0.09]	0.7	15.0
$\mathcal{C}^{\mathrm{NP}}_{9'}$	0.49	[0.21, 0.77]	[-0.33, 1.35]	1.8	19.0
$\mathcal{C}^{\mathrm{NP}}_{10'}$	-0.27	[-0.46, -0.08]	[-0.84, 0.28]	1.4	17.0
$\mathcal{C}_9^{\rm NP}=\mathcal{C}_{10}^{\rm NP}$	-0.21	[-0.40, 0.00]	[-0.74, 0.55]	1.0	16.0
$\mathcal{C}_9^{\rm NP} = -\mathcal{C}_{10}^{\rm NP}$	-0.69	[-0.88, -0.51]	[-1.27, -0.18]	4.1	55.0
$\mathcal{C}_{9'}^{\rm NP}=\mathcal{C}_{10'}^{\rm NP}$	-0.09	[-0.35, 0.17]	[-0.88, 0.66]	0.3	14.0
$\mathcal{C}_{9'}^{\rm NP} = -\mathcal{C}_{10'}^{\rm NP}$	0.20	[0.08, 0.32]	[-0.15, 0.56]	1.7	19.0
$\mathcal{C}_9^{\rm NP} = -\mathcal{C}_{9'}^{\rm NP}$	-1.09	[-1.28, -0.88]	[-1.62, -0.42]	4.8	72.0
$\begin{aligned} \mathcal{C}_9^{\mathrm{NP}} &= -\mathcal{C}_{10}^{\mathrm{NP}} \\ &= -\mathcal{C}_{9'}^{\mathrm{NP}} = -\mathcal{C}_{10'}^{\mathrm{NP}} \end{aligned}$	-0.68	[-0.49, -0.49]	[-1.36, -0.15]	3.9	50.0
$ \begin{aligned} \mathcal{C}_9^{\mathrm{NP}} &= -\mathcal{C}_{10}^{\mathrm{NP}} \\ &= \mathcal{C}_{9'}^{\mathrm{NP}} = -\mathcal{C}_{10'}^{\mathrm{NP}} \end{aligned} $	-0.17	[-0.29, -0.06]	[-0.54, 0.18]	1.5	18.0

Table 2: Best-fit points, confidence intervals, pulls for the SM hypothesis and p-values for different one-dimensional NP scenarios.

Marcin Chrzaszcz (Universität Zürich, IFJ PAN)

Rare Decays at LHCb

If not NP?

- How about our clean P_i observables?
- The QCD cancel as mentioned only at leading order.
- Comparison to normal observables with the optimised ones.

Transversity amplitudes

 \Rightarrow One can link the angular observables to transversity amplitudes

$$J_{1s} \quad = \quad \frac{(2+\beta_{\ell}^2)}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right] + \frac{4m_{\ell}^2}{q^2} \mathrm{Re} \left(A_{\perp}^L A_{\perp}^{R*} + A_{\parallel}^L A_{\parallel}^{R*} \right) \,,$$

$$J_{1c} \quad = \quad \left|A_0^L\right|^2 + \left|A_0^R\right|^2 + \frac{4m_\ell^2}{q^2} \left[\left|A_t\right|^2 + 2\text{Re}(A_0^L A_0^{R^*})\right] + \beta_\ell^2 \left|A_S\right|^2,$$

$$\begin{split} J_{2s} &= \quad \frac{\beta_{\ell}^2}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^R|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right], \qquad J_{2c} = -\beta_{\ell}^2 \left[|A_0^L|^2 + |A_0^R|^2 \right], \\ J_{2s} &= \quad \frac{1}{\beta_{\ell}^2} \left[|A_{\perp}^L|^2 - |A_{\parallel}^L|^2 + |A_{\parallel}^R|^2 - |A_{\parallel}^R|^2 \right], \qquad J_{4} = \frac{1}{-\beta_{\ell}^2} \left[\operatorname{Re}(A_0^L A_{\parallel}^{L*} + A_0^R A_{\parallel}^{R*}) \right], \end{split}$$

$$J_5 \quad = \quad \sqrt{2}\beta_\ell \, \left[{\rm Re}(A_0^L A_\perp^{L\,*} - A_0^R A_\perp^{R\,*}) - \frac{m_\ell}{\sqrt{q^2}} \, {\rm Re}(A_\parallel^L A_S^* + A_\parallel^{R\,*} A_S) \right],$$

$$J_{6s} = 2\beta_{\ell} \left[\operatorname{Re}(A_{\parallel}^{L}A_{\perp}^{L*} - A_{\parallel}^{R}A_{\perp}^{R*}) \right], \qquad \qquad J_{6c} = 4\beta_{\ell} \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}(A_{0}^{L}A_{S}^{*} + A_{0}^{R*}A_{S})$$

$$J_7 \quad = \quad \sqrt{2}\beta_\ell \left[\mathrm{Im}(\mathbf{A}_0^{\mathrm{L}}\mathbf{A}_\parallel^{\mathrm{L}\,*} - \mathbf{A}_0^{\mathrm{R}}\mathbf{A}_\parallel^{\mathrm{R}\,*}) + \frac{\mathbf{m}_\ell}{\sqrt{\mathbf{q}^2}} \,\mathrm{Im}(\mathbf{A}_\perp^{\mathrm{L}}\mathbf{A}_{\mathrm{S}}^* - \mathbf{A}_\perp^{\mathrm{R}\,*}\mathbf{A}_{\mathrm{S}})) \right],$$

$$J_8 = \frac{1}{\sqrt{2}} \beta_\ell^2 \left[\operatorname{Im}(\mathbf{A}_0^{\mathbf{L}} \mathbf{A}_\perp^{\mathbf{L}\;*} + \mathbf{A}_0^{\mathbf{R}} \mathbf{A}_\perp^{\mathbf{R}\;*}) \right], \qquad \qquad J_9 = \beta_\ell^2 \left[\operatorname{Im}(\mathbf{A}_{\parallel}^{\mathbf{L}\;*} \mathbf{A}_\perp^{\mathbf{L}} + \mathbf{A}_{\parallel}^{\mathbf{R}\;*} \mathbf{A}_\perp^{\mathbf{R}}) \right]$$

Link to effective operators

 \Rightarrow So here is where the magic happens. At leading order the amplitudes can be written as (soft form factors):

$$A_{\perp}^{L,R} = \sqrt{2}Nm_{B}(1-\hat{s}) \bigg[(\mathcal{C}_{9}^{\rm eff} + \mathcal{C}_{9}^{\rm eff'}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_{b}}{\hat{s}} (\mathcal{C}_{7}^{\rm eff} + \mathcal{C}_{7}^{\rm eff'}) \bigg] \xi_{\perp}(E_{K}^{*})$$

$$A_{\parallel}^{L,R} \quad = \quad -\sqrt{2}Nm_B(1-\hat{s})\left[(\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}}(\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}}) \right] \xi_{\perp}(E_K^*)$$

$$A_{0}^{L,R} \quad = \quad -\frac{Nm_{B}(1-\hat{s})^{2}}{2\hat{m}_{K}^{*}\sqrt{\hat{s}}} \Bigg[(\mathcal{C}_{9}^{\mathrm{eff}} - \mathcal{C}_{9}^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_{b}(\mathcal{C}_{7}^{\mathrm{eff}} - \mathcal{C}_{7}^{\mathrm{eff}}) \Bigg] \xi_{\parallel}(E_{K}^{*}),$$

where $\hat{s} = q^2/m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\parallel,\perp}$ are the form factors.

Link to effective operators

 \Rightarrow So here is where the magic happens. At leading order the amplitudes can be written as (soft form factors):

$$A_{\perp}^{L,R} \quad = \quad \sqrt{2}Nm_B(1-\hat{s}) \Bigg[(\mathcal{C}_9^{\mathrm{eff}} + \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} + \mathcal{C}_7^{\mathrm{eff}}) \Bigg] \xi_{\perp}(E_{K}^*)$$

$$A_{\parallel}^{L,R} \quad = \quad -\sqrt{2}Nm_B(1-\hat{s})\left[(\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}}) \right] \xi_{\perp}(E_K^*)$$

$$A_{0}^{L,R} \quad = \quad -\frac{Nm_{B}(1-\hat{s})^{2}}{2\hat{m}_{K}^{*}\sqrt{\hat{s}}} \left[(\mathcal{C}_{9}^{\mathrm{eff}} - \mathcal{C}_{9}^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_{b}(\mathcal{C}_{7}^{\mathrm{eff}} - \mathcal{C}_{7}^{\mathrm{eff}}) \right] \xi_{\parallel}(E_{K}^{*}),$$

where $\hat{s} = q^2/m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\parallel,\perp}$ are the form factors. \Rightarrow Now we can construct observables that cancel the ξ form factors at leading order:

$$P_5' = \frac{J_5 + J_5}{2\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}}$$

$B^0 \rightarrow K^* \mu^- \mu^+$ kinematics

⇒ The kinematics of $B^0 \to K^* \mu^- \mu^+$ decay is described by three angles θ_l , θ_k , ϕ and invariant mass of the dimuon system (q^2) .

⇒ $\cos \theta_k$: the angle between the direction of the kaon in the K^* (\overline{K}^*) rest frame and the direction of the K^* (\overline{K}^*) in the B^0 (\overline{B}^0) rest frame. ⇒ $\cos \theta_l$: the angle between the direction of the μ^- (μ^+) in the dimuon rest frame and the direction of the dimuon in the B^0 (\overline{B}^0) rest frame.

⇒ ϕ : the angle between the plane containing the μ^- and μ^+ and the plane containing the kaon and pion from the K^* .

$B^0 \rightarrow K^* \mu^- \mu^+$ kinematics

⇒ The kinematics of $B^0 \to K^* \mu^- \mu^+$ decay is described by three angles θ_l , θ_k , ϕ and invariant mass of the dimuon system (q^2) .

$$\begin{split} \frac{d^4 \Gamma}{dq^2 \operatorname{dcos} \theta_K \operatorname{dcos} \theta_l d\phi} &= \frac{9}{32\pi} \left[J_{1s} \sin^2 \theta_K + J_{1c} \cos^2 \theta_K + (J_{2s} \sin^2 \theta_K + J_{2c} \cos^2 \theta_K) \cos 2\theta_l \right. \\ &+ J_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + J_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ &+ (J_{6s} \sin^2 \theta_K + J_{6c} \cos^2 \theta_K) \cos \theta_l + J_7 \sin 2\theta_K \sin \theta_l \sin \phi + J_8 \sin 2\theta_K \sin 2\theta_l \sin \phi \\ &+ J_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \right], \end{split}$$

 \Rightarrow This is the most general expression of this kind of decay. \Rightarrow The *CP* averaged angular observables are defined:

$$S_i = \frac{J_i + \bar{J}_i}{(d\Gamma + d\bar{\Gamma})/dq^2}$$

Link to effective operators

 $\Rightarrow \text{The observables } J_i \text{ are bilinear combinations of transversity amplitudes: } A^{L,R}_{\perp}, \ A^{L,R}_{\parallel}, \ A^{L,R}_{0}.$

 \Rightarrow So here is where the magic happens. At leading order the amplitudes can be written as:

$$\begin{split} A_{\perp}^{L,R} &= -\sqrt{2}Nm_B(1-\hat{s}) \left[(\mathcal{C}_9^{\rm eff} + \mathcal{C}_9^{\rm eff\prime}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\rm eff} + \mathcal{C}_7^{\rm eff\prime}) \right] \xi_{\perp}(E_{K^*}) \\ A_{\parallel}^{L,R} &= -\sqrt{2}Nm_B(1-\hat{s}) \left[(\mathcal{C}_9^{\rm eff} - \mathcal{C}_9^{\rm eff\prime}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\rm eff} - \mathcal{C}_7^{\rm eff\prime}) \right] \xi_{\perp}(E_{K^*}) \end{split}$$

$$A_{0}^{L,R} = -\frac{Nm_{B}(1-\hat{s})^{2}}{2\hat{m}_{K}^{*}\sqrt{\hat{s}}} \bigg[(\mathcal{C}_{9}^{\mathrm{eff}} - \mathcal{C}_{9}^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_{b}(\mathcal{C}_{7}^{\mathrm{eff}} - \mathcal{C}_{7}^{\mathrm{eff}}) \bigg] \xi_{\parallel}(E_{K}^{*}),$$

where $\hat{s}=q^2/m_B^2$, $\hat{m}_i=m_i/m_B.$ The $\xi_{\parallel,\perp}$ are the soft form factors.

Link to effective operators

⇒ The observables J_i are bilinear combinations of transversity amplitudes: $A_{\perp}^{L,R}$, $A_{\parallel}^{L,R}$, $A_{0}^{L,R}$.

 \Rightarrow So here is where the magic happens. At leading order the amplitudes can be written as:

$$\begin{split} A_{\perp}^{L,R} &= -\sqrt{2}Nm_B(1-\hat{s}) \left[(\mathcal{C}_9^{\rm eff} + \mathcal{C}_9^{\rm eff\prime}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\rm eff} + \mathcal{C}_7^{\rm eff\prime}) \right] \xi_{\perp}(E_{K^*}) \\ A_{\parallel}^{L,R} &= -\sqrt{2}Nm_B(1-\hat{s}) \left[(\mathcal{C}_9^{\rm eff} - \mathcal{C}_9^{\rm eff\prime}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\rm eff} - \mathcal{C}_7^{\rm eff\prime}) \right] \xi_{\perp}(E_{K^*}) \end{split}$$

$$A_{0}^{L,R} = -\frac{Nm_{B}(1-\hat{s})^{2}}{2\hat{m}_{K}^{*}\sqrt{\hat{s}}} \bigg[(\mathcal{C}_{9}^{\rm eff} - \mathcal{C}_{9}^{\rm eff'}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_{b}(\mathcal{C}_{7}^{\rm eff} - \mathcal{C}_{7}^{\rm eff'}) \bigg] \xi_{\parallel}(E_{K}^{*}),$$

where $\hat{s} = q^2/m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\parallel,\perp}$ are the soft form factors. \Rightarrow Now we can construct observables that cancel the ξ soft form factors at leading order:

$$P_5' = \frac{J_5 + \bar{J}_5}{2\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}}$$

Marcin Chrzaszcz (Universität Zürich, IFJ PAN)

Rare Decays at LHCb

Symmetries in $B \rightarrow K^* \mu \mu$

 \Rightarrow We have 12 angular coefficients (S_i).

 \Rightarrow There exist 4 symmetry transformations that leave the angular distributions unchanged:

$$\boldsymbol{n}_{\parallel} = \begin{pmatrix} \boldsymbol{A}_{\parallel}^L \\ \boldsymbol{A}_{\parallel}^{R*} \end{pmatrix}, \quad \boldsymbol{n}_{\perp} = \begin{pmatrix} \boldsymbol{A}_{\perp}^L \\ -\boldsymbol{A}_{\perp}^{R*} \end{pmatrix}, \quad \boldsymbol{n}_0 = \begin{pmatrix} \boldsymbol{A}_0^L \\ \boldsymbol{A}_0^{R*} \end{pmatrix}.$$

$$n_i' = U n_i = \left[\begin{array}{cc} e^{i\phi_L} & 0 \\ 0 & e^{-i\phi_R} \end{array} \right] \left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right] \left[\begin{array}{cc} \cosh i\tilde{\theta} & -\sinh i\tilde{\theta} \\ -\sinh i\tilde{\theta} & \cosh i\tilde{\theta} \end{array} \right] n_i \, . \label{eq:ni}$$

 \Rightarrow Using this symmetries one can show that there are 8 independent observables. The pdf can be written as:

$$\begin{split} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}(\Gamma+\bar{\Gamma})}{\mathrm{d}\cos\theta_l \,\mathrm{d}\cos\theta_k \,\mathrm{d}\phi} \bigg|_{\mathrm{P}} &= \frac{9}{32\pi} \left[\frac{3}{4} (1-F_\mathrm{L}) \sin^2\theta_k \\ &+ F_\mathrm{L} \cos^2\theta_k + \frac{1}{4} (1-F_\mathrm{L}) \sin^2\theta_k \cos 2\theta_l \\ &- F_\mathrm{L} \cos^2\theta_k \cos 2\theta_l + S_3 \sin^2\theta_k \sin^2\theta_l \cos 2\phi \\ &+ S_4 \sin 2\theta_k \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_k \sin \theta_l \cos \phi \\ &+ \frac{4}{3} A_\mathrm{FB} \sin^2\theta_k \cos \theta_l + S_7 \sin 2\theta_k \sin \theta_l \sin \phi \\ &+ S_8 \sin 2\theta_k \sin 2\theta_l \sin \phi + S_9 \sin^2\theta_k \sin^2\theta_l \sin 2\phi \right]. \end{split}$$