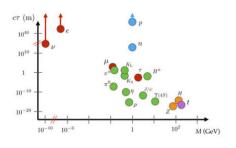
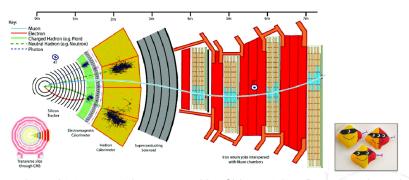
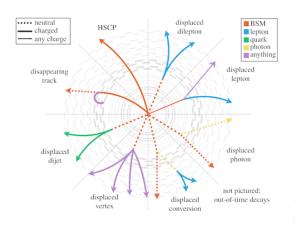
Searches for LLP at FCC-ee


Marcin Chrzaszcz mchrzasz@cern.ch

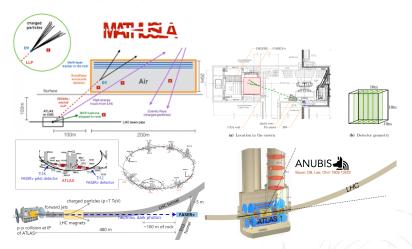
3rd FCC-France, Higgs & ElectroWeak Factory Workshop, Annecy, 1st Dec 2021


Lifetimes of Particles

⇒ Not all particles of SM have the same

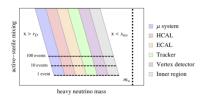


Identifying particles in the detector


⇒ Long Living particles are not like SM particles. Detector doesn't see them

LLP are weirdos

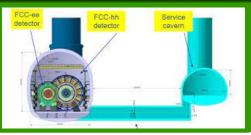
- Displaced tracks/vertices
- Disappearing/kinded tracks
- Anomalous tracks (dE/dX)
- Slow/stopped particles (out of time)
- Emerging signatures
- ⇒ But this also means:
- Non or small background.
- Need dedicated techniques.


Weirdos are getting attenchion

All have something in common:

They need to fit into existing infrastructure.

We need to think ahead


arxiv::1604.02420

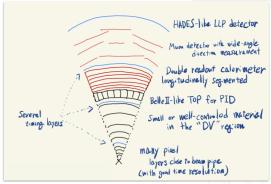
- ⇒ We can tackle this problem in 2 ways:
- Kick the can down the road as we did with LHC.
 From LHC we know this is not ideal. Lots of "lumi" was lost for LLP this way.
- Be smart and creative and design the detectors to be able to detect LLP.

HECATE

HErmetic CAvern TrackEr (HECATE), arxi::2011.01005, Jan Hajer, Marco Drewes, MC

- Use the HUGE FCC caverns and cover them detectors.
- Most space & cost efficient design.

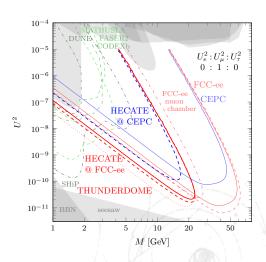
The sweat spot


- Hermetic 4π detector.
- No additional civil engineering.
- Cheap: 10MCHF.

- Needs timing.
- Scintilators, RPC
- Discussion with Imad Laktine started

HECATE fits between other experiments

A dream LLP detector?



HNL sensitivity

⇒ Simple SM extension:

$$\begin{split} \mathcal{L} \supset \\ -\frac{m_W}{v} \overline{N} \theta_a^* \gamma^\mu e_{La} W_\mu^+ \\ -\frac{m_Z}{\sqrt{2} v} \overline{N} \theta_a^* \gamma^\mu \nu_{La} Z_\mu \\ -\frac{M}{v} \theta_a h \overline{\nu_L}_\alpha N + \text{h.c.} \; , \end{split}$$

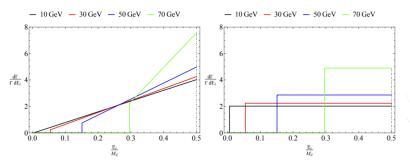
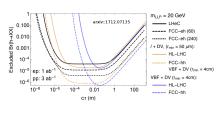
Dirac - Majorana neturinos? Credit: arxiv::2105.06576

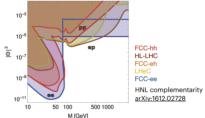
⇒ The nature of neutrinos boils down to distinction:

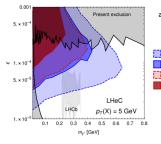
$$e^{+}e^{-} \to Z \to \nu_{4}\bar{\nu}_{i} \to \ell^{-}(W^{*})^{+}\bar{\nu}_{i} ,$$

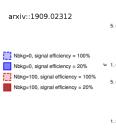
 $e^{+}e^{-} \to Z \to \bar{\nu}_{4}\nu_{i} \to \ell^{+}(W^{*})^{-}\nu_{i} .$

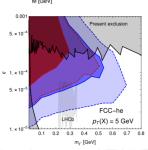
⇒ One can just look at th energy spectra of the decay:


FIG. 7: Averaged, normalized differential decay widths of $\nu_4 \to \ell^- \pi^+$ as a function of the energy of the charged-lepton, averaged over the heavy-neutrino production angle, for ν_4 produced in Z-decay-at-rest assuming the heavy neutrinos are Dirac (left) and Majorana (right) fermions. The different curves correspond to different values of m_4 . The same curves apply, both in the left-hand and in the right-hand panels, to the $\ell^+\pi^-$ final-states.


Other LLP at FCCee


- ⇒ There number of models with LLP that can be discovered at FCC is enormous:
- Hidden Valley models with neutral, long-lived particles that the Higgs boson can decay to (arXiv:1812.05588).
- Higgs portal, dark glueball(arXiv:1911.08721)
- Neutral naturalness (arXiv:1506.06141)
- Folded SUSY (arXiv:1911.08721)
- Neutralinos (arXiv:1904.10661)
- ALPs (arxiv:1808.10323)
- Dark photon (arxiv:1906.10608)


Complementarity with FCChh

Other LLP at FCCee

- ⇒ There number of models with LLP that can be discovered at FCC is enormous:
- Hidden Valley models with neutral, long-lived particles that the Higgs boson can decay to (arXiv:1812.05588).
- Higgs portal, dark glueball(arXiv:1911.08721)
- Neutral naturalness (arXiv:1506.06141)
- Folded SUSY (arXiv:1911.08721)
- Neutralinos (arXiv:1904.10661)
- ALPs (arxiv:1808.10323)
- Dark photon (arxiv:1906.10608)

Take home msg

- ⇒ FCC is an ideal environment to look for LLP.
- ⇒ We are in unique spot to start thinking about them ahead of time.
- ⇒ Possible Majorana Dirac distinction.
- ⇒ Complementarity with hadron machines.
- ⇒ We cannot waste this opportunity!!

Backup

