# Prospects and challenges for future ee and ep colliders



Marcin Chrzaszcz mchrzasz@cern.ch



University of Zurich<sup>UZH</sup>



Physik-Insitut, University of Zurich
Institute of Nuclear Physics, Polish Academy of Sciences

Neutrinos at the High Energy Frontier, Amherst, 18-20 July, 2017

#### Outline

- $\Rightarrow$  Future  $e^+e^-$  colliders.
- ILC
- CLIC
- FCCee,eh
- ⇒ Detector
- ⇒ Physics program:
- Higgs program.
- Z pole program.
- WW program.
- $t \bar{t}$  program.
- Neutrino program.

#### Quo Vadis HEP?

#### What has LHC found...



 $\Rightarrow$  A Higgs boson.  $m_H=125~{
m GeV}$   $\Gamma_H=4.1~{
m MeV}$  ... and what is still missing.



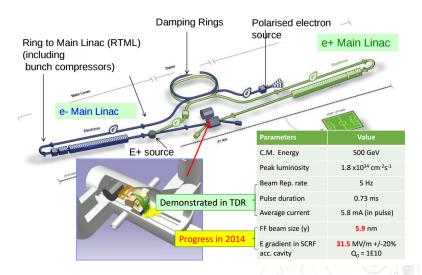
⇒ Dark matter/energy?

- ⇒ Neutrino masses?
- ⇒ Matter/antimatter asymmetry?

- ⇒ LHC has ongoing physics program...
- o Run 2 +3: 300 by 2023

- HL-HLC: 3000 by 2035
- ⇒ But what for post-LHC area? Need to plan now!





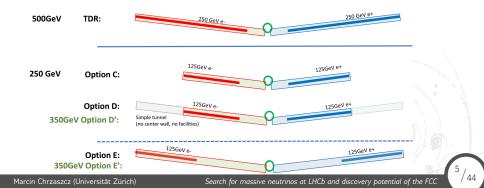






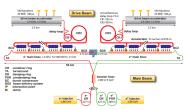

#### International Linear Collider (ILC)




#### International Linear Collider (ILC)

⇒ The ILC concept was reviewed by the Japanese government.

#### Feedbacks (domestic only)


- ⇒ Academia in general: reserved/hostile
- ⇒ Funding authorities: reserved/critical
- ⇒ Political allies (Local/Central): enthusiastic/cautious

⇒ "Given the fact that the energy scale of new physics is currently unknown, the physics reach of precision Higgs and other SM probes of ILC250 are comparable to that of ILC500". Hiroaki Aihara



### Compact Linear Collider (CLIC)

#### ⇒ CLIC also wants a staged approach:





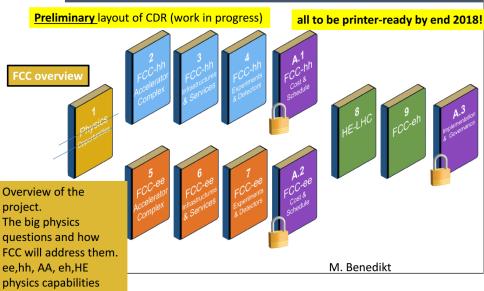

| Parameter                          | Symbol               | Unit                                    | Stage 1 | Stage 2 | Stage 3 |
|------------------------------------|----------------------|-----------------------------------------|---------|---------|---------|
| Centre-of-mass energy              | $\sqrt{s}$           | GeV                                     | 380     | 1500    | 3000    |
| Repetition frequency               | $f_{\rm rep}$        | Hz                                      | 50      | 50      | 50      |
| Number of bunches per train        | $n_b$                |                                         | 352     | 312     | 312     |
| Bunch separation                   | $\Delta t$           | ns                                      | 0.5     | 0.5     | 0.5     |
| Pulse length                       | $	au_{ m RF}$        | ns                                      | 244     | 244     | 244     |
| Accelerating gradient              | G                    | MV/m                                    | 72      | 72/100  | 72/100  |
| Total luminosity                   | $\mathscr{L}$        | $10^{34}  \text{cm}^{-2} \text{s}^{-1}$ | 1.5     | 3.7     | 5.9     |
| Luminosity above 99% of $\sqrt{s}$ | $\mathscr{L}_{0.01}$ | $10^{34}  \text{cm}^{-2} \text{s}^{-1}$ | 0.9     | 1.4     | 2       |
| Main tunnel length                 |                      | km                                      | 11.4    | 29.0    | 50.1    |
| Number of particles per bunch      | N                    | 10 <sup>9</sup>                         | 5.2     | 3.7     | 3.7     |

#### Future Circular Collider (FCC)

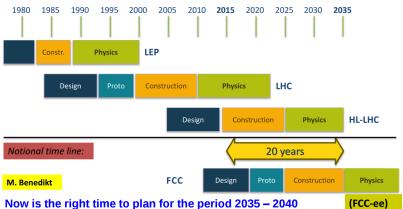
#### FCC - study:

- $\Rightarrow pp$  collider: the ultimate goal.
- $\Rightarrow ee$  collider: first step.
- $\Rightarrow ep$  collider: additional option.

- o  $98~\mathrm{km}$  infrastructure in Geneva area
- ⇒ The Goal: CDR and cost review by the end of 2018!







and

complementarities

## 12 CDR Volumes (9 + 3 Annex)



#### Time line of FCC



Goal of phase 1: CDR by end 2018 for next update of European Strategy

#### Why circular collider?

To achieve interesting physics program one would have to obtain a factor of  $10^3$  of LEP luminosity.

The Luminosity scales:

$$L \sim R \frac{P_{SR}}{\beta^*}$$



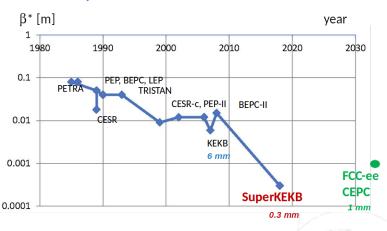
- ⇒ So how can one increase the luminosity without the electric energy cost?
- ⇒ The answer is inside the B-factory design!
- $\Rightarrow$  One has to lower the beam emittance:  $\beta^*$ .

#### Why circular collider?

To achieve interesting physics program one would have to obtain a factor of  $10^3$  of LEP luminosity.

The Luminosity scales:

$$L \sim R \frac{P_{SR}}{\beta^*}$$



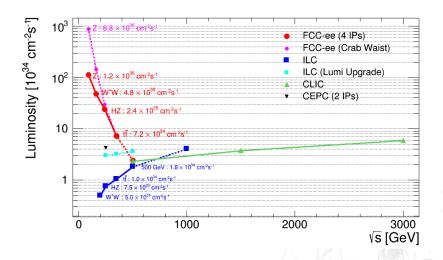

⇒ So how can one increase the luminosity without the electric energy cost?

- ⇒ The answer is inside the B-factory design!
- $\Rightarrow$  One has to lower the beam emittance:  $\beta^*$ .



#### $\beta^*$ over last 40 years




- $\Rightarrow$  The  $\beta^*$  will be increased to  $1 \mathrm{mm}$  compared to  $5 \mathrm{~cm}$  at LEP.
- $\Rightarrow$  SuperKEKB will pave the way towards  $\beta^* < 1 \text{ mm}$ .
- $\Rightarrow$  Additional improvements to reach the  $10^3$  factor in lumi are:
- Continues injection
- More bunches

#### Beam parameters

| parameter                                                         | FCC-ee (400 MHz) |       |      |      | LEP2              |        |
|-------------------------------------------------------------------|------------------|-------|------|------|-------------------|--------|
| Physics working point                                             | Z                |       | ww   | ZH   | tt <sub>bar</sub> |        |
| energy/beam [GeV]                                                 | 45.6             |       | 80   | 120  | 175               | 105    |
| bunches/beam                                                      | 30180            | 91500 | 5260 | 780  | 81                | 4      |
| bunch spacing [ns]                                                | 7.5              | 2.5   | 50   | 400  | 4000              | 22000  |
| bunch population [10 <sup>11</sup> ]                              | 1.0              | 0.33  | 0.6  | 0.8  | 1.7               | 4.2    |
| beam current [mA]                                                 | 1450             | 1450  | 152  | 30   | 6.6               | 3      |
| luminosity/IP x 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 210              | 90    | 19   | 5.1  | 1.3               | 0.0012 |
| energy loss/turn [GeV]                                            | 0.03 0.03        |       | 0.33 | 1.67 | 7.55              | 3.34   |
| synchrotron power [MW]                                            | 100              |       |      | 22   |                   |        |
| RF voltage [GV]                                                   | 0.4              | 0.2   | 0.8  | 3.0  | 10                | 3.5    |

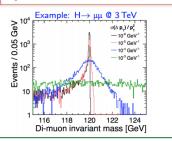
- ⇒ Identical beam optics for all energies.
- ⇒ FCC would have two separate rings
- ⇒ Detectors similar to the ILC and CLIC.

## Comparison of $e^+e^-$ colliders



## **FCCep**

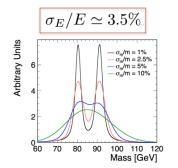



- ⇒ Requires additional ERL
- ⇒ Would be needed anyway for FCChh.

#### Detectors requirements

#### momentum resolution

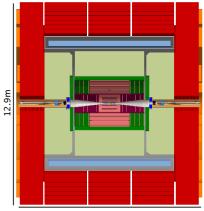
- for high p<sub>T</sub> tracks


$$\sigma_{p_T}/p_T^2 \simeq 2 \times 10^{-5} GeV^{-1}$$

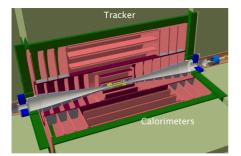


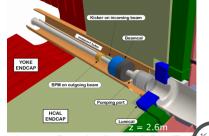
#### impact parameter resolution

$$\sigma_{d_0}^2 = a^2 + \frac{b^2}{p^2 \sin^3 \theta}$$
$$a \lesssim 5\mu m \quad b \lesssim 15\mu m GeV$$

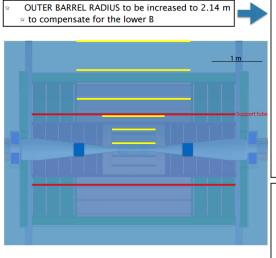

#### jet energy resolution




- lepton ID efficiency > 95 %
  - over full energy range


#### forward coverage

 electron and photon tagging (e.g. dark matter studies) CLIC detector E.Leogrande










Tracker E.Leogrande



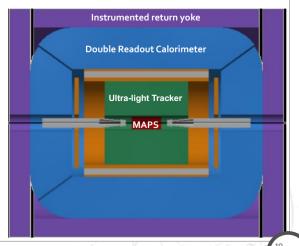
|      |     | 11.41   |       |         |
|------|-----|---------|-------|---------|
| Scal | e a | III the | narre | lavers* |

| Scale all the parter layers |      |      |  |  |  |
|-----------------------------|------|------|--|--|--|
| layer radius<br>[mm]        | CLIC | FCC  |  |  |  |
| ITB1                        | 127  | 127  |  |  |  |
| ITB2                        | 340  | 400  |  |  |  |
| ITB3                        | 554  | 670  |  |  |  |
| OTB1                        | 819  | 1000 |  |  |  |
| OTB2                        | 1153 | 1568 |  |  |  |
| ОТВ3                        | 1486 | 2136 |  |  |  |

\*layer thickness may need to be increased to accommodate more water cooling

#### Support tube\*

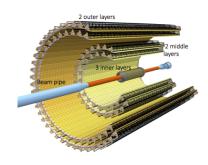
| radius [mm] | CLIC | FCC |
|-------------|------|-----|
| inner       | 575  | 675 |
| outer       | 600  | 700 |


\*to be checked for mechanical stability

IDEA detector M.Dam

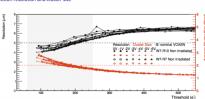
## IDEA detector concept based on present state-of-the-art technologies:

- ◆ Vertex detector, MAPS
- Ultra-light drift chamber with PID
- Pre-shower counter
- Double read-out calorimetry
- 2 T solenoidal magnetic field
- Possibly instrumented return yoke
- Or possibly surrounded by large tracking volume (R ≃ 8m) for very weakly coupled (long-lived) particles

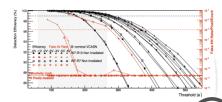

Two Options: Coil inside or outside calorimetry

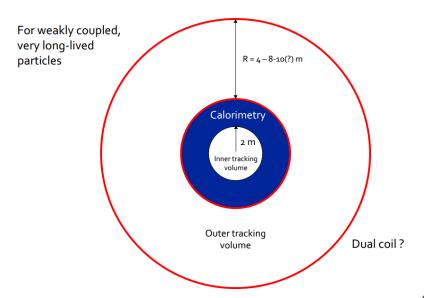


Tracker M.Dam


## Inspired by new ALICE ITS based on MAPS technology

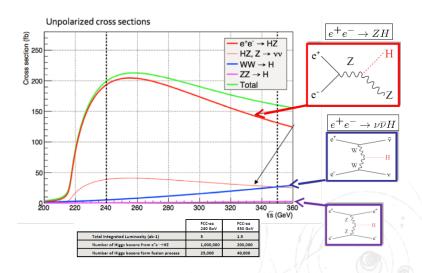
- □ Pixels 30 × 30 μm²
- ◆ Light
  - $\Box$  Inner layers: 0.3% of  $X_o$  / layer
  - □ Outer layers: 1% of X₀ / layer
- Performance:
  - Point resolution of 5 μm (or better)
  - □ Efficiency of ~100%
  - □ Extremely low fake rate hit rate





#### Courtesy J.W. van Hoorne

#### Position resolution and cluster size



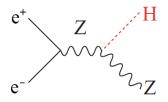

#### Detection efficiency and fake-hit rate

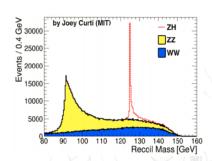




## Physics program

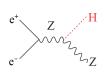
### Higgs production





#### Higgs Mass

 $\Rightarrow$  A very clean Higgs mass determination in  $e^+e^- \to ZH$  and using a recoil technique (unique for lepton colliders):

$$m_{\text{recoil}} = (\sqrt{s} - E_{\mu})^2 - |p_{\mu}|^2$$


- $\Rightarrow$  With  $Z \rightarrow \mu\mu$  and  $Z \rightarrow ee$
- $\Rightarrow$  ZH decays are tagged independently of the Higgs decay mode.
- $\Rightarrow$  Precise measurement of  $g_{HZZ}$ :





#### Higgs Width

⇒ Higgs-strahlung.



⇒ Total HZ crossection:

$$\sigma(HZ) \propto g_{HZZ}^2$$

⇒ Exclusive cross section:

$$\sigma(HZ) \times Br(H \to XX) \propto g_{HZZ}^2 \frac{g_{HXX}^2}{\Gamma_H}$$

⇒ Total Higgs width from WW process:

$$e^+$$
  $\overline{v}$   $W$   $W$   $H$   $W$   $e^ V$ 

$$\frac{\sigma(HZ) \times Br(H \to b\bar{b})}{\sigma(H\nu\nu) \times Br(H \to b\bar{b})} \propto \frac{g_{HZZ}^2}{g_{HWW}^2}$$

⇒ And finally:

$$\sigma(H\nu\nu) \times Br(H \to WW^*) \propto \frac{g_{HWW}^4}{\Delta_H}$$

 $\circ$  From this:  $\Delta_H$ .

#### Higgs Couplings

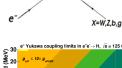
 $\Rightarrow$  The Higgs couplings to *WW*, *ZZ*,  $c\bar{c}$ , gg,  $\tau^-\tau^+$ ,  $\gamma\gamma$  can be determined via tagging the respective Higgs decay final states  $\Rightarrow$  Observables:

$$\sigma(e^+e^- \to ZH) \times Br(H \to X)$$

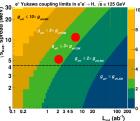
$$\sigma(e^+e^- \to H\nu\nu) \times Br(H \to X)$$

| in %        | HL-LHC | FCC-ee |
|-------------|--------|--------|
| <b>g</b> нz | 2-4    | 0.21   |
| gнw         | 2-5    | 0.43   |
| <b>9</b> нь | 5-7    | 0.64   |
| <b>G</b> Hc | -      | 1.04   |
| <b>g</b> Hg | 3-5    | 1.18   |
| <b>9</b> Ητ | 5-8    | 0.81   |
| <b>g</b> нμ | 5      | 8.79   |
| <b>д</b> нү | 2-5    | 2.12   |
| Гн          | 5-8%   | 1.55   |

arXiv:1307.7135 arXiv:1308.6176


#### Higgs Production in S-channel

- ⇒ Potentially possibility to measure the Hee Yukawa coupling!
- ⇒ Several final states can be studied.
- ⇒ It requires running:


$$\sqrt{s} = M_H = 125 \text{ GeV}$$

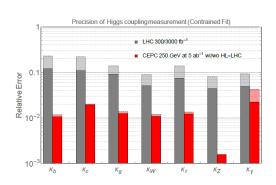
 $\Rightarrow$  Since  $\Gamma_H=4.2~{\rm MeV}$ , it requires monochromatization (increasing the energy resolution in the CMS energies for  $e^-e^+$  interaction without reducing the inherent energy spread of the colliding beams)

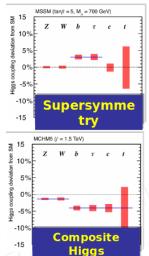
| CMS energy<br>Spread [MeV] | L<br>[ab <sup>.1</sup> ] |
|----------------------------|--------------------------|
| 6                          | 2                        |
| 2                          | 7                        |



Н

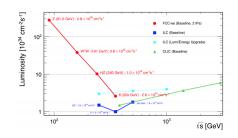


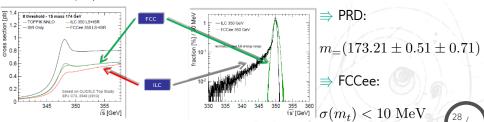

X=W,Z,b,g


Limits 3.5 times the SM predictions in both cases.

#### Normalized Higgs Couplings

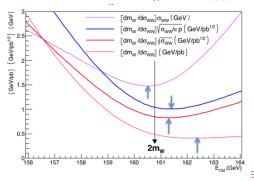
⇒ Higgs couplings normalized to the SM predictions:


$$k_x = \frac{g_{\rm Hxx}}{g_{\rm Hxx}^{SM}}$$






### MegaTop: $t\bar{t}$ threshold scan


- ⇒ For the first time the the top quark to be studied using a precisely defined leptonic state.
- $\Rightarrow$  The dependence of the t quark cross-section shape on the t quark mass and interactions is computable to high precision (depends on  $m_t$ ,  $\Gamma_t$ ,  $\alpha_s$ ,  $g_H tt$ , ISR, luminosity spectrum).





### Physics program WW

#### $\Rightarrow$ Measurement of $m_W$ from $\sigma_{WW}$



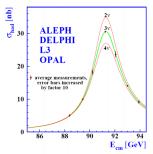
## Max statistical sensitivity at $\sqrt{s}=2m_W+0.6~{\rm GeV}$

$$\Delta m_W^{FCC} = 500 \text{ keV}$$

#### Stat. precision

- with
- $L = 11 \text{ pb}^{-1} \rightarrow 350 \text{ MeV}$
- with
- $L = 8 \text{ ab}^{-1} \rightarrow 0.4 \text{ MeV}$

#### Sys. precision needed:


- $\circ \Delta E(\text{beam}) < 0.4 \text{ MeV}$
- $\circ \Delta \epsilon / \epsilon < 10^{-4}$
- $\circ \Delta \sigma_B < 0.7 \text{ fb}$

 $\Delta m_W^{LEP} = 50 \text{ MeV}$ 

## Physics program at the Z pole

$$\Rightarrow L = 3 \times 10^{36} \rightarrow 4 \times 10^{12} \text{ Z decays.}$$

 $\Rightarrow$  Z mass and width wit precision of 10 keV (stat) +100 keV (sys).



Radiation function calculated to  $\mathcal{O}(\alpha_s^3) \sim 10^{-4}$ 

⇒ Relative precisions (JHEP01(2014)164):

$$R_{\ell} = \frac{\Gamma_{\ell}}{\Gamma_{\text{had}}} \sim 5 \times 10^{-5}$$

$$R_{\ell} = \frac{\Gamma_{\ell}}{\Gamma_{\rm had}} \sim 5 \times 10^{-5}$$

$$R_{b} = \frac{\Gamma_{b\bar{b}}}{\Gamma_{\rm had}} \sim 2 - 5 \times 10^{-5}$$

$$N_{\nu} \sim 10^{-3}$$

$$\Delta_{\rm rel}\alpha_s(m_Z^2)\sim 2\times 10^{-3}$$

$$\Delta_{\mathrm{QED}} \alpha_s(m_Z^2) \sim 3 \times 10^{-3}$$

#### Z asymmetries

 $\Rightarrow$  Z boson decay to ff: 3 observables from the direction and decay of the outgoing fermion.

 $\Rightarrow$  With e,  $\mu$ ,  $\tau$ , c and b one can measure:

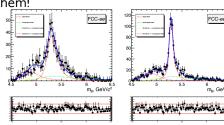
$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_{tot}} = \frac{3}{4} A_e A_f$$
 
$$A_f = \frac{2g_{Vf} g_{Af}}{g_{Vf}^2 + g_{Af}^2} \qquad \Rightarrow \text{With } \tau\text{:}$$

$$\sin^2 \theta_{eff}^{\ell} = \frac{1}{4} \left( 1 - \frac{g_{V\ell}}{g_{A\ell}} \right) \qquad A_{pol} = \frac{\sigma_{F,R} + \sigma_{B,R} - \sigma_{F,L} - \sigma_{B,L}}{\sigma_{tot}} = -A_f$$

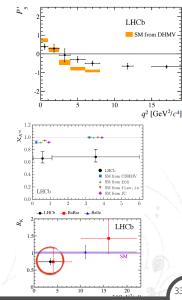
$$A_{pol}^{FB} = rac{\sigma_{F,R} - \sigma_{B,R} - \sigma_{F,L} + \sigma_{B,L}}{\sigma_{tot}} = -rac{3}{4}A_e$$

⇒ With polarized beams we have two additional asymmetries:

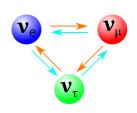
$$A_{LR} = \frac{\sigma_l - \sigma_r}{\sigma_{tot}} = A_e \qquad A_{pol}^{FB} = \frac{\sigma_{F,l} - \sigma_{B,l} - \sigma_{F,r} + \sigma_{B,r}}{\sigma_{tot}} = -\frac{3}{4}A_f$$

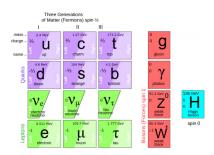

## Z pole summary

| х                                        | Physics                                                    | Present precision   |                        | TLEP stat Syst Precision   | TLEP key             | Challenge               |
|------------------------------------------|------------------------------------------------------------|---------------------|------------------------|----------------------------|----------------------|-------------------------|
| M <sub>z</sub><br>MeV                    | Input                                                      | 91187.5<br>±2.1     | Z Line shape<br>scan   | 0.005 MeV<br><±0.1 MeV     | E <sub>CM</sub>      | QED corrections         |
| $\Gamma_{\!\scriptscriptstyle Z}$<br>MeV | Δρ (T)<br>(no Δα!)                                         | 2495.2<br>±2.3      | Z Line shape<br>scan   | 0.008 MeV<br><±0.1 MeV     | E <sub>CM</sub>      | QED corrections         |
| R <sub>I</sub>                           | $\alpha_{s_a}\delta_b$                                     | 20.767<br>± 0.025   | Z Peak                 | 0.0001<br>± 0.002          | Statistics           | QED corrections         |
| N <sub>v</sub>                           | Unitarity of PMNS, sterile v's                             | 2.984<br>±0.008     | Z Peak<br>Z+γ(161 GeV) | 0.00008<br>±0.004<br>0.001 | ->lumi<br>Statistics | QED Bhabha corrections  |
| R <sub>b</sub>                           | $\delta_{b}$                                               | 0.21629<br>±0.00066 | Z Peak                 | 0.000003<br>±0.000020 - 60 | Statistics, small IP | Hemisphere correlations |
| $A_{FB}$                                 | $\Delta \rho$ , $\epsilon_{3,\Delta} \Delta \alpha$ (T, S) | 0.0171<br>±0.0010   | Z peak                 | 0.000003<br>±0.00001       |                      |                         |


#### Flavour Physics

⇒ Flavour Physics is an very active topic:


- ⇒ LHCb will dominate in the decays where the muon are in final state.
- $\Rightarrow$  However aus are very challenging for them!




- $\Rightarrow$  Overall  $\mathcal{O}(10^3)$  events!
- ⇒ Angular analysis possible.
- $\Rightarrow$  Similar beeing studied for  $B_s^0 \to \tau \tau$ .



#### Right-handed neutrinos





Shaposhnikov et al.

- $\Rightarrow$  Neutrino oscillations: at least two massive light neutrinos.  $\Rightarrow$  No renormalisable way in the SM therefore  $\rightarrow$  evidence for new physics.
- ⇒ Sterile neutrinos for type I seesaw mechanism.

#### Neutrino mass eigenstates

⇒ See-saw mechanism:

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \bar{N}_R^e) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} v_L^c \\ N_R \end{pmatrix}$$

$$\begin{split} & \text{tg } 2\theta = \frac{2m_D}{M_R} \text{,} \quad m_\nu = \frac{1}{2} \left[ M_R - \sqrt{M_R^2 + 4m_D^2} \right] \\ & M = \frac{1}{2} \left[ M_R + \sqrt{M_R^2 + 4m_D^2} \right] \end{split}$$

#### Dirac only

$$M_{\rm P} = 0$$
  $m_{\rm P} \neq 0$ 

 $\Rightarrow$  4 states of equal

masses.

I = 1/2 active neutrinos.

I=0 sterile neutrinos.

#### Majorana only

$$M_R \neq 0$$
,  $m_D = 0$ 

⇒ 4 states of equal masses.

 $\Rightarrow I = 1/2$  active neutrinos.

 $\Rightarrow I = 0$  sterile neutrinos.

#### Dirac + Majorana

$$M_R \neq 0$$
,  $m_D \neq 0$ 

⇒ 4 states of diff. masses.

$$\Rightarrow I = 1/2$$
 active neutrinos.

$$\Rightarrow I = 0$$
 ALMOST sterile neutrinos.

#### Right handed neutrinos

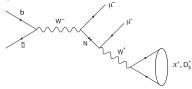
$$\nu = \nu_L \cos \theta - N_R^c \sin \theta$$

$$N = N_R \cos \theta + \nu_L^c \sin \theta$$

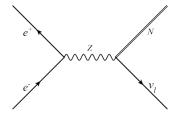
 $u_L$  - light mass eigenstate

N - heavy mass eigenstate

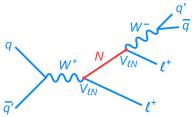
 $u_L$  - active neutrino


 $N_R$  - "sterile" neutrino

 $\Rightarrow$  In the EW interaction the  $u_L$  are produced:


$$\nu_L = \nu \cos \theta + N \sin \theta$$

- ⇒ Many consequences:
- Effect on neutrino oscillations (eV mass)
- Dark matter (keV mass regime)
- o Z invisible width.
- Exotic particle decays:  $H\nu N$  and  $Z\nu N$ .
- Heavy Flavour physics: strange, charm, beauty flavoured mesons via  $W^*$ .
- Violation on lepton flavour/universality.






 $\Rightarrow$  Z factory:



 $\Rightarrow pp$  colliders:



 $\Rightarrow ee$  colliders:



and many many more...

#### Production in Z decays

⇒ Production:

$$Br(Z \to \nu_m \bar{\nu}) = Br(Z \to \nu n \bar{u}) |U|^2 \left(1 - \frac{m_{\nu_m}^2}{m_Z^2}\right)^2 \left(1 + \frac{1}{2} \frac{m_{\nu_m}^2}{m_Z^2}\right)$$

⇒ Decay length:

$$L \approx \frac{3\mathrm{cm}}{\left|U\right|^2 \left(m_{\nu}^2\right)^6}$$

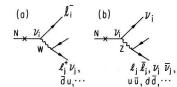
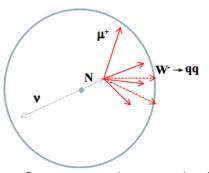
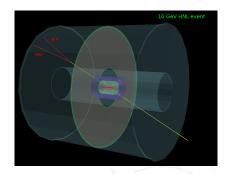
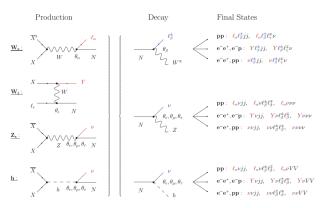




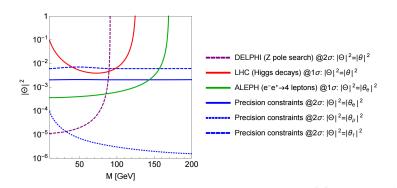

FIG. 2. Typical decays of a neutral heavy lepton via (a) charged current and (b) neutral current. Here the lepton  $l_i$  denotes  $e,\mu,$  or  $\tau$ .


- $\Rightarrow$  Background: four fermion:  $e^-e^+ \rightarrow W^*W^*$ ,  $e^-e^+ \rightarrow Z^*(\nu\nu) + Z/\gamma$
- $\Rightarrow$  Long lifetime of N helps rejecting the background!

#### Detection at a hadron collider



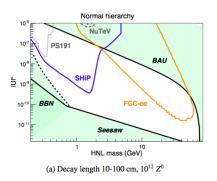


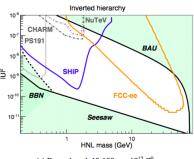

- ⇒ Super easy to detect topology!
- $\Rightarrow$  At least two charged tracks produced.



#### ⇒ FCCee:

- Displaced vertices (Z-pole).
- Electroweak precision measurements (mostly Z-pole).
- Higgs boson production and decay modes.
- ⇒ FCC-hh/e: LFV, LNV, displeased vertex.

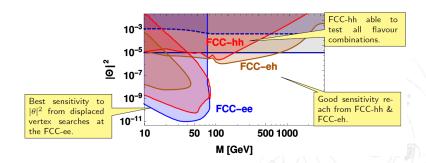

#### Current picture




- ⇒ Present limits are dominated by LEP.
- $\Rightarrow$  Higgs decays: Best constraints from  $H \rightarrow \gamma \gamma$

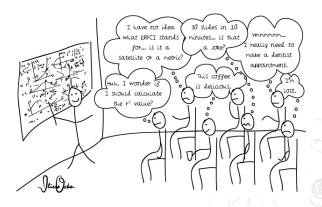
Sensitivity arxiv:1411.5230v2

- ⇒ Preliminary studies show excellent potential!
- ⇒ Confirmation needed, based on accurate detector simulation
- ⇒ Complementarity with other CERN projects (e.g., SHiP, see N.Serra talk tmr.)






(a) Decay length 10-100 cm,  $10^{12} Z^0$ 


## Synergy between FCC-xy

- ⇒ Systematics assessment of heavy neutrino signatures at colliders.
- ⇒ First looks FCC-hh and FCC-he sensitivities.
- ⇒ Golden channels:
- FCC-hh: LFV signatures and displeased vertexes.
- FCC-he LFV signatures and displeased vertexes.
- FCC-hh: EWPO and displeased vertexes.



#### Summary

- ⇒ The FCC program is constantly growing.
- ⇒ CDR in 2018!
- $\Rightarrow$  One of the core program of FCC are HNL!
- ⇒ future colliders will exclude large part of parameter space!



## Backup

