Low Mass Drell-Yan Status Report

22

Marcin Chrzaszcz Katharina Müeller Andreas Weiden

Analysis and Software Week, CERN February 1, 2017

M. Chrzaszcz, K. Müeller, A. Weiden

Low Mass Drell-Yan at 7,8 and 13 TeV

Introduction to Drell-Yan

- Drell-Yan are process of two quark anihilations in which neutral current couples to two leptons.
- The cross section of this process depends on two components:
 - Hard scattering process \Rightarrow NNLO pQCD.
 - Parton Distribution Function (PDF).
- Measurement of the cross section have a high sensitivity to the PDF
- Due to unique coverage 2 < y < 5LHCb probes the $Q^2 - x$ region not covered by other experiments.

Selection

- Analysis based on 2011, 2012 data set. Now adding 2016.
- Trigger:
 - \circ LO_LODiMuonDecision,
 - Hlt1DiMuonHighMassDecision,
 - Hlt2DiMuonDY(3,4)Decision
- Stripping:
 - StrippingDY2MuMuLine(3,4)
- Selection:
 - $\begin{array}{l} \circ \ 2 < \eta^{\mu} < 4.5, \\ \circ \ p^{\mu} > 10 \ \text{GeV}, \\ \circ \ p_{T}^{\mu} > 3 \ \text{GeV}, \\ \circ \ \chi_{vtr}^{2,\mu\mu} < 5, \end{array}$
 - $10 < m(\mu\mu) < 120$ GeV.

Isolation

- Drell-Yan unfortunately do not peak in mass —» need another variable to control the purity.
- Instead we define an isolation variable:

$$\mu_{\rm iso} = \log(p_T^{cone}(\mu,0.5) - p_T^{cone}(\mu,0.1))$$

• For two muons we take the maximum of the two isolations:

$$\mu\mu_{\rm iso} = \max(\mu_{\rm iso}^+, \mu_{\rm iso}^-)$$

Isolation as a function of mass

Normalized log(isolation) in selected mass bins:

Backgrounds smear the isolation in data, especially away from resonances (orange). In MC very small mass-dependency, which we need to study.

Even at Z peak (blue and green), isolation bulk wider in data than in MC.

M. Chrzaszcz, K. Müeller, A. Weiden

Low Mass Drell-Yan at 7,8 and 13 TeV

Explanation of variables

Mass dependency of bulk

 $\mathrm{MC},\,2012$

Large mass-dependence of bulk fraction, but smaller mass-dependence of bulk mean. Difference between MagUp and MagDown to be investigated.

Effect of rapidity

Z-peak

Strong dependency of bulk fraction of rapidity.

1 / bulk fraction under-estimated in MC.

M. Chrzaszcz, K. Müeller, A. Weiden

Low Mass Drell-Yan at 7,8 and 13 TeV

/22

Effect of rapidity Z-peak

MC and data bulk mean and width agree at Z-peak. Data shows some dependency of bulk width for high y, MC not.

22

Effect of rapidity

Full mass-range

Rapidity distribution is not the same for different mass-bins (different regions in x). Working on finding out if mass dependence is given by this (to be finished by next week).

Backgrounds

- There are two sources of backgrounds:
 - Heavy flavour decays.
 - Mis-ID.
- For fitting the $\mu\mu_{iso}$ we need to know both the signal and background distribution.
- Background templates can be determined from data
 - Heavy flavour decays:
 - \Leftrightarrow Requiring the $\chi^{2,\mu\mu}_{vtx} > 16$
 - \hookrightarrow For cross-check IP $>5~\mathrm{mm}$
 - $\circ~$ Miss-ID:
 - \hookrightarrow Require that both muons have the same sign.
 - \hookrightarrow For cross-check take the minimum bias stripping line.

Cross section calculations

• To calculate the cross section the luminosity will be used:

$$\sigma = \frac{\varrho f^{\mathrm{MIG}}}{\mathcal{L}\varepsilon^{\mathrm{SEL}}} \sum \frac{1}{\varepsilon^{\mathrm{TRIG}}\varepsilon^{\mathrm{MUID}}\varepsilon^{\mathrm{GEC}}\varepsilon^{\mathrm{TRACK}}},$$

where

- ρ signal fraction from the fit.
- f^{MIG} correction to bin-bin migration.
- \mathcal{L} integrated luminosity.
- ε^{SEL} efficiency on the vertex requirement.
- $\varepsilon^{\text{MUID}}$ muon identification efficiency.
- ε^{GEC} global event cut efficiency.
- $\varepsilon^{\text{TRACK}}$ tracking efficiency.

\Rightarrow Evaluated using MC sample:

2011 MagDown	0.21320 ± 0.00014
2011 MagUp	0.21306 ± 0.00014
2012 MagDown	0.20402 ± 0.00013
2012 MagUp	0.20372 ± 0.00013

- \Rightarrow Good agreement between polarities!
- \Rightarrow 2012 efficiency is lower than the 2011.
- \Rightarrow Will merge the polarities:

 $\begin{array}{c|cccc} 2011 & 0.21313 \pm 0.00010 \\ 2012 & 0.20387 \pm 0.00009 \end{array}$

Evaluated on data directly, by fitting the $\Gamma(\text{SPDHits})$ to data: \Rightarrow

 \Rightarrow 2011 data:

 \Rightarrow 2012 data:

Low Mass Drell-Yan at 7,8 and 13 TeV

22

 \Rightarrow Testing the $y - M_{\mu\mu}$ dependence:

/22

 \Rightarrow Suggest the RMS as small systematic.

M. Chrzaszcz, K. Müeller, A. Weiden

Low Mass Drell-Yan at 7,8 and 13 TeV

22

Conclusions

- MC isolation template describes data at $Z\operatorname{-peak}$ reasonably well
- But some differences (mainly in y) exist, so have to take templates from data (MC can still serve as cross-check)
- Templates show a mass-dependence in MC (especially bulk fraction)
- Different mass-regions have different rapidity distributions
- Needs to be determined if mass-dependence is driven by rapidity-dependence
- 2016 MC requested

Mass dependency of bulk

MC vs data, 2012

Near the Z-peak and the Υ -peak good agreement. Small mass-dependency even in MC (value%).

Low Mass Drell-Yan at 7,8 and 13 TeV

Effect of multiplicity

Isolation should, in general, be dependent on multiplicity. First, check if multiplicity is mass dependent.

No mass dependency of multiplicity (nTracks and nSPD) in MC

Effect of multiplicity

At Z-peak ($60 < M_{\mu\mu} < 120 GeV/c^2$) Isolation not independent of nTracks:

In data, width and mean of bulk dependent on nTracks, in MC only mean.

Low Mass Drell-Yan at 7,8 and 13 TeV

Effect of multiplicity

At Z-peak ($60 < M_{\mu\mu} < 120 GeV/c^2$). Bulk width not independent of *nSPD*:

Mean of bulk agrees in data and MC.

Multiplicity reweighting Data, MC befor reweighting, MC after reweighting

M. Chrzaszcz, K. Müeller, A. Weiden

Low Mass Drell-Yan at 7.8 and 13 TeV

22

Backup

Low Mass Drell-Yan at 7,8 and 13 TeV

 $|_{22}$