$B^0 ightarrow K^* \mu^- \mu^+$ MC Filter

Marcin Chrząszcz mchrzasz@cern.ch Thomas Blake thomas.blake@cern.ch

 $B^0 \rightarrow K^* \mu^- \mu^+$ meeting, CERN October 10, 2016

Marcin Chrząszcz (Universität Zürich)

A glimpse in the Run1 analysis

 \Rightarrow In the Run1 we have asked for a filtered MC to correct for detector acceptance.

 \Rightarrow Asked for 5.5M events (after stripping in DST), which means we generated around 110M events.

 \Rightarrow After our full selection we ended up with with only 1.4M events.

Warning! The stripping line has a PID cut inside: $PID_{\mu} > -3$. This essentially means we model that efficiency from MC.

Run2 options

- 1. Repeat what we did in Run1 and keep the PID cuts.
- 2. Filter on stripping removing the PID cut.
- 3. Filter on MC truth:
 - $\circ~$ 4 charge tracks on $\rm StdAllNoPiDPions/Kaons/Muons$
 - $\circ~$ And truth matched the decay channel: mcMatch('[B0 => K*(892)0mu + mu-]CC')

Why MCTruth?

⇒ We are using a very old stripping line that for sure can be (and should be) optimized for the final analysis of Run2!
 ⇒ Producing an MCTRUTH match sample would allow the sample to be reused for future analysis even if the stripping line will change!

Retentions

- \Rightarrow To study the solution I have used 2012 Physics MC.
- \Rightarrow I have taken 17.250 simulated events.
- \Rightarrow Here is the results:

Туре	Filter retention	Events in the ntuple	Truth Matched
Strip	3447~(20~%)	4975	1648
Strip no PID $_{\mu}$	3504~(20.3~%)	5176	1660
MCTruth	5009~(29~%)	4456	1660

 \Rightarrow Now I have cross check this running the same algorithms on stripped and non stripped MC always getting the same numbers.

 \Rightarrow For speed purpose I have put a cut on the $m_{K^*} < 1300 \text{ MeV}$ (can be adjusted if needed).

 \Rightarrow Other option to consider is to remove ISMUON form stripping to get all efficiencies from PIDCalib.

Plans

 \Rightarrow With Tom we feel that it would be best to ask for 200M generated events.

 \Rightarrow Also we noticed that we have 50M events of some old MC10 (Stripping 12) MC, which we propose to delete.

 \Rightarrow For PPG: The $R(D^*)$ have already got green light for more then 1000M generated events, so we getting the 200M should not be a problem.

 \Rightarrow To discuss: Do we want a flat $m(K\pi)$ sample or we can keep the K^* ?

Plans 2

 \Rightarrow Besides the normal $B \to K^* \mu \mu$ PHSP we should ask for other MC channels.

 \Rightarrow I proposed to scale the old numbers by factor: $\frac{5}{3}$.

Decay	DecFile event type	N. of events	N. of events Run2
$B \to K^* J/\psi$ (physics)	11144001	2M	3.5M
$B \to K^* J/\psi$ (PHSP?)	xxxxxxx	0	3.5M
$B ightarrow K^* \mu \mu$ (physics)	11114001	1M	1.5M
$\Lambda_b \to \Lambda(1530) \mu \mu$	15114000	1M	1.5M
$\Lambda_b \to p K \mu \mu$	15114011	2M	3.5M
$B_s^0 \to \phi \mu \mu$	13114002	0.6M	1M
$B_u \to K \mu \mu$	12113001	1M	1.5M

 \Rightarrow This would be unfiltered production and this MC will be needed for other analysis as well.

- \Rightarrow Do we want to simulate a flat q^2 in the $B \rightarrow K^* \mu \mu$?
- \Rightarrow Do we want to have a flat $K\pi$ mass distribution in the simulation?

This is not related to MC requests.

MCmatching studies.

 \Rightarrow Let's look how the candidates that have been matched by: mcMatch('[B0 => K * (892)0mu + mu -]CC') look like:

 \Rightarrow BKGCAT==10 is the pure signal. The mcMatch is not changing anything in that number of entries.

 \Rightarrow BKGCAT==30 is the K= $K \leftrightarrows \pi$ swaps. This goes away with some PID selection

MCmatching studies.

 \Rightarrow Now all BKGCAT==10 have true mcMatch:

 \Rightarrow How does BKKCAT==50,40 (missID +FSR, FSR)look like:

Backup

Marcin Chrząszcz (Universität Zürich)