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Searches for the lepton flavour violating decay T~ — Iz ¥ and the lepton flavour and baryon
u and T > py have been carried out using proton-proton

inegaied oy of L0 1 taken by the L expriment 1

 found for any signa, and limits have been set at 90% confidence
W) <80 x 1074, B~ — putp) <33 x 107 and

) The resuls for the ¥ - i and T decay modes

present the first. direct experimental limits on these channels.

© 2013 CERN. Published by Elsevier B. Al rights reserved.

© Obtained limit for 7 — yupupu: 8.0 x 1078,
©® BaBar and Belle: 2.1(3.2) x 1078 at 90% CL.
® For 2012 + 2011 planned to implement several improvements.
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MC Samples

© In 2011 analysis one of the biggest contributions to the systematic
error from MC was the reweighting the MC signal for the correct
cross section.

® For 2012 we solved this problem by simulating signal in 5 parts.
One for each production channel(normalization to 1M events):

(B — 7 — pup 116,600
B—D,— 71— pupp 87,200
T—ppp =B —=D—7— pup 1,800

D, — 7 — ppp 750,600
(D = 7 — ppp 43,800
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MC Generator Cuts

In order to reduce the number of unwanted events we introduced
generator level cuts.

| Signal sample’ || Background sample(Dimuon)? |

Pt | > 250MeV | py, > 280MeV
p. | >25GeV | p, >2.9GeV
m( ) < 45GeV
DOCA(up) < 0.35mm

Gain a factor of ~ 8 in statistics compared to 2011.

'X — 7 = 3u, Dy — n(pupy)pv, Dy = ¢(up)w

5 - 7T
CcC, bb M.Chrzaszcz 2013
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Normalization channel

As last year we will use D, — ¢(uu)m. Events are split into 2
categories:

©® cc - D, — ¢(up)m 897,000
® bb — D, — ¢(up)r 103,000

We avoid reweighting of the samples as in 2011.
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Mass correction

A RooPlot of "mass” i Ds — ¢(pp)m in MC.

A RooPlot of "mass”

Hooo Gaol [

8000

000

2000

L T e
O e Tew 190 180 2000 2020 —— = -
mass T i oo’ e’ s

[ ] =
mean = 1970.3 £+ 0.9MeV ® mean < 1969.1 + 0.60MeV

Fit 7 — ppp in MC.

ARooPlot of "mass”
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In agreement with 2011.

g
mass

® mean=1777.7 £+ 0.4MeV M.Chrzaszcz 2013
Update on analysis Normalization channel 7/22



Peaking backgrounds

© The dominant background source of peaking background in this
analysis is D, — n(upy)uv

® In 2011 we suffered from lack of MC statistics.
©® Thanks to generator cuts our pdfs became more stable.

Events / (13.8889 )

A RooPlot of "mass"
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A RooPlot of "mass"
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Normalization

For the normalization of background samples(c¢ and bb) we used
generator cuts efficiencies and corrected the nominal cross section
accordingly:

o Nyc
Eacc X Egen X O'LHCb

The obtained luminosities(per 1M events):

O L=025+ 0.04pb_1
O Lpp=120=% O.15pb‘1

Dominant uncertainty from the cross section.
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Isolating parameters

© In 2011 we used the isolation parameter developed for BY — jup.
For 2012 data we optimised the isolation parameter for our
channel based on MVA(BDT).

® Instead of training on isolating vs non-isoalting tracks we train on
combinatorial background vs signal.

® We see big improvement compared to old isolation.

ifier: Background rejection versus Signal efficiency
TMVA response for classifier: BDT 0 - gl 2k g Y L2 IMVA
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Ensemble Selection

© In the last few years people winning leading machine learning
contests started to combine their classifiers to squeeze the best
out of them.

® This technigue/method is know as Ensemble Selection or
Blending.

® The plan for 7 — pup is to take it to the next level.

@ Combine not only different channels, but also different =
sources(slide 4).

M.Chrzgszcz, N.Serra 2013
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Ensemble Selection

Background relectlon versus Signal efficiency
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Binning optimisation

For the 2011 analysis we had two classifiers: PIDNN and Mgeo.
Each of them we optimised separately. For the 2012 analysis we are
performing a simultaneous 2D optimisation.

HPunzi1

Fipunzi
Entries

5.468
5526

2.19
2.192

nof PID bi

ProbNNmu bin

8 9 10
n of GEO bins-trash
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Conclusions

© Analysis is well underway.

® MC samples are almost there.

©® Hope to improve the selection.

O ™ — pup mode will be studied in parallel.
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Update on analysis Conclusions 14 /22



Bt

We really suck in selecting this channel.
ROC curves
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B— Ds— 7

On the biggest contributing channel we are quite optimal.

ROC curves
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Ds — 7

On the biggest contributing channel we are quite optimal.

ROC curves
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B— Dt — 7

On the biggest contributing channel we are quite optimal.
ROC curves
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(B

On the biggest contributing channel we are quite optimal.

ROC curves
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Comparison on mix sample

On the biggest contributing channel we are quite optimal.
ROC curves
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Conclusions on TMVA

e Each of the signal components is enormously larger than MVA
trained on mix.

» Method looks very promising if we can find a nice blending
method(work for next week).

e Mayby discusion on TMVA/MatrixNet/Neurobayes is next to
leading order effect compared to this method?
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Comparison on mix sample

Background rejectlon versus Slgnal efflciency Background relection versus Slgnal efficiency
. TMVA
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