The SuperB factory physics prospects and project status

Marcin Chrząszcz

Institute of Nuclear Physics, Polish Academy of Science, on behalf of the SuperB collaboration

21st September 2012

Introduction SuperB Infrastructure Accelerator Luminosity Detector SVT DCH DIRC EMC and IFR **Physics** Precise maesurements **Rare B Physics** TDCP $B \rightarrow X_s \gamma$ B rare decays B_s decays Charm Physics LFV **CP** Violation τEDM

B factories

B factories have achieved great successes over the last dozen of years. They will be succeeded by the Super Flavor Factories:

Super Flavor Factories

- 1 Data 75ab⁻¹
- **2** Luminosity $10^{36} cm^{-2} s^{-1}$
- **③** Flexibility to run on charm threshold with luminosity $10^{35} cm^{-2} s^{-1}$
- 4 Longitudinal polarization of electron beam 80%
- Oppraded BaBar detector
- 6 Start of data taking: 2018
- ⑦ 10ab⁻¹ per year

Tor Vegata Site

Important dates:

- 1 TDR: Autumn this year.
- 2 Colliding beams: June 2018.

The SuperB factory

Tor Vegata Site

The SuperB factory

Quest for Luminosity

Quest for Luminosity

Recycling BaBar

The SuperB factory

Detector

Silicon Vertex Tracker (SVT)

- Five layers(1-5) of double-sided silicon strip detectors
- Radial span 3 15 cm
- Upgrade the electronics for faster readout
- Additional Layer 0:
 - Radius $\approx 1.5 cm$
 - 2 Low material budget: $X_0 = 0.5\%$
 - Two possible technologies: Hybrid Pixels
 - and Double Sided Strip detectors (Striplets) Detector

The SuperB factory

Drift Chamber (DCH)

- 40 layers of ≈ 1 cm cells parallel to beam line
- Provide momentum and $\frac{dE}{dx}$ for low momentum particles(p < 700 MeV)
- \approx 10000 channels
- Occupancy(3.5% 5%)

R&D:

- Geometry
- Gas mixture
- aaaa

Detector of Internally Reflected Cherenkov Light

- Momentum range 0.7 4 GeV
- Radiator: synthetic fused silica
- Photon detectors outside field region
- Radiation hard

Electromagnetic and Hadronic Calorimeter

Electromagnetic Calorimeter:

- Coverage 94%of4⊓
- Csl or LYSO crystals
- Crystal length 16 – 17.5X₀
- Radiation hard

Instrumented Flux Return:

- Upgrade form TDC to BIRO
- Scintillators
- Iron reused from BaBar
- SiPM

CKM matric

 $\Delta \overline{\eta} = 0.016$ $\Delta \overline{
ho} = 0.028$

CKM matric

$$\Delta \overline{\eta} = 0.016$$

 $\Delta \overline{
ho} = 0.028$

$$\begin{array}{l} \Delta\overline{\eta}=0.0024\\ \Delta|V_{cb}|_{\textit{incl}}=0.5\%\;\Delta|V_{cb}|_{\textit{excl}}=1.0\%\\ \Delta\overline{\rho}=0.0028\\ \Delta|V_{ub}|_{\textit{incl}}=1.0\%\;\Delta|V_{ub}|_{\textit{excl}}=3.0\% \end{array}$$

The SuperB factory

Physics

 $\rightarrow \tau \nu$

Physics

Time-Dependent CP (TDCP)

Time-dependent CP analysis can show signs of new physics. One has to study a set of modes:

 $b \rightarrow s\overline{s}c, \, b \rightarrow s$

Current experimental results(SM -observed):

 $\Delta sin(2\beta) = 2.7\sigma$, penguin

 $\Delta sin(2\beta) = 2.1\sigma$, tree

Golden modes in SuperB: $B \rightarrow J/\psi K^0$, $B \rightarrow \eta' K^0$, $B \rightarrow f_0 K_s^0$

Mode	Current Precision			Predicted Precision (75 ab ⁻¹)		
	Stat.	Syst.	$\Delta S^{f}(\text{Th.})$	Stat.	Syst.	$\Delta S^{f}(Th.)$
$J/\psi K_S^0$	0.022	0.010	0 ± 0.01	0.002	0.005	0 ± 0.001
$\eta' K_S^0$	0.08	0.02	0.015 ± 0.015	0.006	0.005	0.015 ± 0.015
$\phi K_S^0 \pi^0$	0.28	0.01	_	0.020	0.010	_
$f_0 K_S^0$	0.18	0.04	0 ± 0.02	0.012	0.003	0 ± 0.02
$K^{0}_{S}K^{0}_{S}K^{0}_{S}$	0.19	0.03	0.02 ± 0.01	0.015	0.020	0.02 ± 0.01
ϕK_S^0	0.26	0.03	0.03 ± 0.02	0.020	0.005	0.03 ± 0.02
$\pi^{0}K_{S}^{0}$	0.20	0.03	0.09 ± 0.07	0.015	0.015	0.09 ± 0.07
ωK_S^0	0.28	0.02	0.1 ± 0.1	0.020	0.005	0.1 ± 0.1
$K^{+}K^{-}K^{0}_{S}$	0.08	0.03	0.05 ± 0.05	0.006	0.005	0.05 ± 0.05
$\pi^{0}\pi^{0}K_{S}^{0}$	0.71	0.08	_	0.038	0.045	-
ρK_S^0	0.28	0.07	-0.13 ± 0.16	0.020	0.017	-0.13 ± 0.16

$B \rightarrow X_s \gamma$

Very important probe for new physics! Current experimental average: $Br(B \rightarrow X_s \gamma) = (3.52 \pm 0.23 \pm 0.09)10^{-4}$

Theoretical prediction from NNLO:

 $Br(B
ightarrow X_s \gamma) = (3.15 \pm 0.23) 10^{-4}$

There are two ways to study this decay:

1 Exclusive:

- The earliest results were done suing a large number of exclusive decays, which were fully reconstructed
- Errors arising from unseen modes
- Obsolete for SuperB
- 2 Inclusive:
 - Use tagging to tag the other B
 - No requirements on X_s
 - Disadvantage: Cut on photon energy
 - Effort to keep the cut as small as possible

Experimentally challenging to measure inclusive decays.

B rare decays

$$\mathrm{B}^{\pm} \to \mathrm{D}^{(*)} \tau^{\pm} \nu$$

 $tan\beta/m_{H}$ (1/GeV) Hot decay for SuperB!

•
$$R(D) = \frac{B \to D\tau\nu}{B \to D\ell\nu}$$

•
$$R(D^*) = \frac{B \rightarrow D^* \tau \nu}{B \rightarrow D^* \ell \nu}$$

	<i>R</i> (D)	R (D*)
BaBar	0.440 ± 0.071	0.332 ± 0.029
SM	0.297 ± 0.017	0.252 ± 0.003
Difference	2.0 σ	2 .7σ

The SuperB factory

17/26

 B_s is clearly LHCb domain. Short runs at CLEO and Belle shown that $e^+ e^-$ can contribute in this matter. Potential for SuperB:

Observable	Error on 1fb ⁻¹	Error on 30fb ⁻¹
$\Delta \Gamma[ps^{-1}]$	0.16	0.03
β_s from $B_s \rightarrow J/\psi \phi[deg]$	16	6
β_s from $B_s \rightarrow K\overline{K}^0[deg]$	24	11
$\left \frac{V_{td}}{V_{ts}} \right $	0.08	0.017

- **1** Decays with neutral particle $B_s \to J/\psi\eta$, $B_s \to K_S^0\pi$, $B_s \to D^*K_S^0$, $B_s \to \Phi\eta'$
- 2 Measurements of $\mathcal{B}(B \to \gamma \gamma)$. SM prediction $\mathcal{B}(B \to \gamma \gamma) = (2 - 4) \times 10^{-7}$. NP (SUSY) $\mathcal{B}(B \to \gamma \gamma) = 5 \times 10^{-6}$.

3 Measurements of semileptonic assymetry. $A_{SL}^{s} = \frac{1 - \left|\frac{q}{p}\right|^{4}}{1 + \left|\frac{q}{p}\right|^{4}} = \frac{N_{1} - N_{2}}{N_{1} + N_{2}}$

$$\textit{N}_{1}=\textit{B}_{s}\rightarrow\overline{\textit{B}}_{s}\rightarrow\textit{D}_{s}^{*-}\ell^{+}\nu\textit{N}_{2}=\textit{B}_{s}\rightarrow\overline{\textit{B}}_{s}\rightarrow\overline{\textit{D}}_{s}^{*}\ell^{-}\nu$$

Charm Physics

- 1 Plan for running at $\psi(3770)$ treshold.
- 2 Scenario: Collect 500fb⁻¹.
- O tag possible. Other meson can be studied with very small background.
- Potential improvement from SuperB:
 - Improvemnet of mixing parameters x_D, y_D.
 - CP violation in $\overline{D} \overline{D}$: $A_{SL} = \frac{N_1 N_2}{N_1 + N_2}$

$$N_1 \equiv \Gamma(\overline{\mathrm{D}^\circ} \to \ell^- \nu \mathrm{K}^+),$$

 $N_2 = \Gamma(\overline{\mathrm{D}^\circ} \to \ell^+ \nu \mathrm{K}^-).$

- Search for $\mathrm{D}^0 \to \mu\mu$.
- Quantum correlations can allow to measure the relative strong phase.

Charm Physics

Charm Physics

Lepton Flavor Violation (LFV)

- LFV can occur in SM due to neutrino masses
- Any observation is evidence of new physics
- Most promising channels: $\tau \rightarrow I\gamma, \tau \rightarrow III$.

$\tau \rightarrow l\gamma$ sensitivity

- Better tracking resolution, increased Δm – ΔE box by 65%
- Higher photon efficiency
- Increase of geometry acceptance
- Thicker signal peak.
- Smaller boost improves the performance of the fit

Polarization

- SuperB will have polarized electron beam (80%)
- One can use this information in NP searches
- O Preliminary results:
 - Upper limit at 90%: 2.44 imes 10⁻⁹
 - 3σ observation: 5.50 imes 10⁻⁹

 $\tau \rightarrow 3\mu$

Current analysis:

- Calculate the thrust axis
- Semi tag the second τ
- Limit obtained (90%) Br($\tau \rightarrow 3\mu$) = 8.1 × 10⁻¹⁰

LFV Summary

CP Violation

- CP violation was never observed in τ sector
- SM prediction is negligibly small $O(10^{-12})$ in $\tau^{\pm} \rightarrow K^{pm} \pi^0 \nu$.
- Any observation is clear indication of NP
- Very few NP models can explain this:
 - 1 RPV SUSY
 - 2 Multi Higgs models
- SuperB can improve sensitivity 75 times compared to CLEO

au Electric Dipole Moment

- τ EDM can be measured with single angle differential cross section ${\it e^+e^-} \to \tau^+\tau^-.$
 - Improvement using polarized beam
 - Achievable sensitivity: $10^{-19}ecm$