# The SuperB factory physics prospects and project status

Marcin Chrząszcz

on behave of SuperB Collaboration

Institute of Nuclear Physics PAN Krakow, Poland

21<sup>st</sup> September 2012



#### 1 Introduction

#### 2 SuperB Infrasctructure

- Accelerator
- Luminosity



#### Detector

- SVT
- DCH
- DIRC
- EMC and IFR

#### **Physics** 4

- Rare B Physics
- TDCP
- $B \to X_s \gamma$
- I FV
- CP violation
- EDM





### B factories

B factories achived a great success over the dozen years. A natural continuation of this project are Super Flavor Factories.

#### Super Flavor Factories

- Data 75ab<sup>-1</sup>.
- **2** Luminosity  $10^{36} cm^{-2} s^{-1}$ .
- Flexibility to run on charm threshold with luminosity  $10^{35} cm^{-2} s^{-1}$ .
- O Logitudanal polarization of electron beam 80%.
- Upgradet Babar detector.
- Start of data taking: 2018.
- $10ab^{-1}$  peer year.









# Quest for Luminosity









Detector

# Recycling

SuperB detector is based on Babar.



Marcin Chrząszcz (IFJ PAN)

#### Detector SVT

#### Silicon Vertex Tracker



- Five layers(1-5) of double-sided silicon strip detectors.
- Radial span 3-15 cm.
- Upgrade the electronics for faster readout.
- Additional Layer 0:
  - **1** Radius  $\approx 1.5 cm$  .
  - 2 Low material budget:  $X_0 = 0.5\%$ .
  - Two possible technologies: Hybrid Pixels, Double Sided Strip detectors(Striplts).





Detector C

DCH

# Drift Chamber



- 40 layers of  $\approx 1 cm$  cells parralel to beam line.
- Provide momentum and  $\frac{dE}{dx}$  for low momentum particles(p < 700 MeV).
- ullet pprox 10000 channels
- Ocuupancy

R& D:

- Geometry
- Gas mixture
- aaaa



Detector

DIRC

### Detector of Internally Reflected Cherenkov light



- Momentum range 0.7 4*GeV*
- Radiator: synthetic fused silica. ۲
- Photon detectors outside field region.
- Radiatoin hard.



Detector EMC and IFR

### Electromagnetic and hadronic calorimeter



Electronamgnetic Calorimeter:

- Coverage 94%*of* 4Π
- CsI or LYSO cristals
- Crystal lenght  $16 17.5X_0$
- Radiatoin hard.

Instrumented Flux Return:

- Upgrade form TDC to BIRO
- Scintilators
- Iron reused from Babar
- SiPM



Physics Rare B Physics

 $B \to \tau \nu$ 

Precise SM prediction:

$$Br(B 
ightarrow l
u) = rac{G_F^2 m_B}{8\pi} m_l^2 (1 - rac{m_l^2}{m_B^2}) f_B^2 |V_{ub}|^2 au_B$$
  
In SUSY:

$$\begin{array}{l} Br(B \rightarrow l\nu) = \\ \frac{G_F^2 m_B}{8\pi} m_l^2 (1 - \frac{m_l^2}{m_B^2}) f_B^2 |V_{ub}|^2 \tau_B (1 - \frac{\tan^2\beta}{1 + \overline{\epsilon} \tan\beta} \frac{m_B^2}{m_H^2}) \end{array}$$







### Time Depended CP

Time Depended CP can be signs of new physics. One has to study set of modes:

 $b 
ightarrow s \overline{s} c$ , b 
ightarrow s

Curent experimental results(SM -observed):

 $\Delta sin(2\beta) = 2.7\sigma$ , penguin

 $\Delta sin(2\beta) = 2.1\sigma$ , tree

Golden modes in SuperB:  $B \rightarrow J/\psi K^0$ ,  $B \rightarrow \eta' K^0$ ,  $B \rightarrow f_0 K_s^0$ 

| Mode                          | Current Precision |       |                          | Predicted Precision $(75  \mathrm{ab}^{-1})$ |       |                          |
|-------------------------------|-------------------|-------|--------------------------|----------------------------------------------|-------|--------------------------|
|                               | Stat.             | Syst. | $\Delta S^f(\text{Th.})$ | Stat.                                        | Syst. | $\Delta S^f(\text{Th.})$ |
| $J/\psi K_S^0$                | 0.022             | 0.010 | $0\pm0.01$               | 0.002                                        | 0.005 | $0\pm 0.001$             |
| $\eta' K_S^0$                 | 0.08              | 0.02  | $0.015 \pm 0.015$        | 0.006                                        | 0.005 | $0.015 \pm 0.015$        |
| $\phi K^0_S \pi^0$            | 0.28              | 0.01  | _                        | 0.020                                        | 0.010 | _                        |
| $f_0 K_S^0$                   | 0.18              | 0.04  | $0 \pm 0.02$             | 0.012                                        | 0.003 | $0 \pm 0.02$             |
| $K^{0}_{S}K^{0}_{S}K^{0}_{S}$ | 0.19              | 0.03  | $0.02\pm0.01$            | 0.015                                        | 0.020 | $0.02\pm0.01$            |
| $\phi K_S^0$                  | 0.26              | 0.03  | $0.03\pm0.02$            | 0.020                                        | 0.005 | $0.03\pm0.02$            |
| $\pi^{0}K_{S}^{0}$            | 0.20              | 0.03  | $0.09\pm0.07$            | 0.015                                        | 0.015 | $0.09\pm0.07$            |
| $\omega K_S^0$                | 0.28              | 0.02  | $0.1\pm0.1$              | 0.020                                        | 0.005 | $0.1 \pm 0.1$            |
| $K^+K^-K^0_S$                 | 0.08              | 0.03  | $0.05\pm0.05$            | 0.006                                        | 0.005 | $0.05\pm0.05$            |
| $\pi^{0}\pi^{0}K_{S}^{0}$     | 0.71              | 0.08  | _                        | 0.038                                        | 0.045 | _                        |
| $\rho K_S^0$                  | 0.28              | 0.07  | $-0.13\pm0.16$           | 0.020                                        | 0.017 | $-0.13\pm0.16$           |





# $B \rightarrow X_s \gamma$

Very important probe of new physics! Current experimental result averaged out:  $Br(B \rightarrow X_s \gamma) = (3.52 \pm 0.23 \pm 0.09)10^{-4}$ Theoretical calculations on NNLO:  $Br(B \rightarrow X_s \gamma) = (3.15 \pm 0.23)10^{-4}$ Experimently chalenging to measure the inclusive decays. There are two ways of studing this decay:

Exlusive:

- The earliest results were done suing a large number of exclusive decays, which are fully reconstructed.
- Erros rising from unseen modes.
- Obsolete for SuperB.
- Inclusive:
  - Use tagging to tag the other B.
  - No requirements on  $X_s$ .
  - Disadvantage: Cut on photon energy.
  - Effort to keep the cut as small as possible



| Physics | LFV |
|---------|-----|
| LFV     |     |

- LFV can occure in SM due to masses of the neutrinos.
- Any observation is evidence of new physics.
- Most promising channels:  $\tau \rightarrow I\gamma$ ,  $\tau \rightarrow III$ .





### $\tau \rightarrow {\it I}\gamma$ sensitivity

- Better tracking resolution, increase Δm – ΔE box, by 65%.
- Higher photon efficiency.
- Increase of geometry acceprance.
- Thicker signal peak.
- Smaller boost improves performance of the fit.





#### Polarization

- SuperB will have polarized electron beam(80%). One can use this infromation
- $\begin{array}{l} \mbox{Preliminary results: Upper limit} \\ \mbox{at 90\%: } 2.44\times10^{-9} \ 3\sigma \\ \mbox{observation: } 5.50\times10^{-9} \end{array}$



 $\tau \rightarrow 3\mu$ 





# LFV Summary





- CP violation was never observed in  $\tau$  sector.
- SM prediction is neglible small  $O(10^{-12})$ / in  $\tau^{\pm} \to K^{pm} \pi^0 \nu$ .
- Any observation is clear identification of NP.
- Very fiew NP models can explain this:
  - RPV SUSY
  - Ø Multi Higgs models
- SuperB can improve sensitivety 75 times compared to CLEO.



EDM can be measured with single angle differential cross section  $e^+e^- \to \tau^+\tau^-.$ 

- Improvement using polarized beam.
- Achivable sensitivety:  $10^{-19}ecm$

