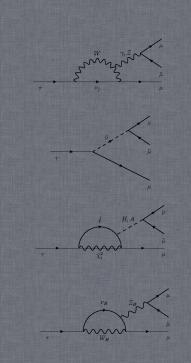
The SuperB factory physics prospects and project status

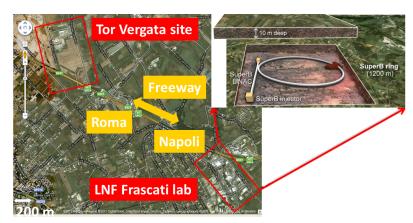

Marcin Chrząszcz

Institute of Nuclear Physics, Polish Academy of Science, on behalf of the SuperB collaboration

21st September 2012

Introduction SuperB Infrastructure Accelerator Luminosity Detector SVT **DCH** DIRC EMC and IFR **Physics** Precision Measurements Rare B Physics **TDCP** $B \to X_s \gamma$ **B** Rare Decays B_s Decays Charm Physics LFV **CP Violation** τ EDM

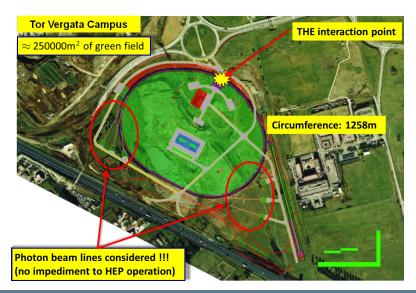
B factories

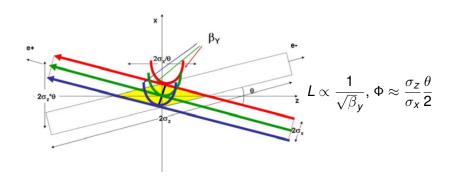

B factories have contributed to many important physics discoveries over the last decade. They will be succeeded the Super Flavor Factories:

Super Flavor Factories

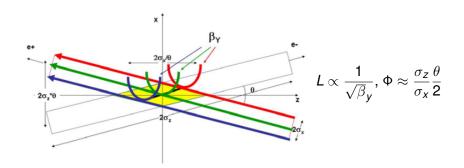
- Data 75ab⁻¹
- **2** Luminosity $10^{36} cm^{-2} s^{-1}$
- 3 Flexibility to run on charm threshold with luminosity $10^{35} cm^{-2} s^{-1}$
- 4 Longitudinal polarization of electron beam 80%
- 6 Upgraded BaBar detector
- 6 Start of data taking: 2018
- **7** 10ab^{−1} per year

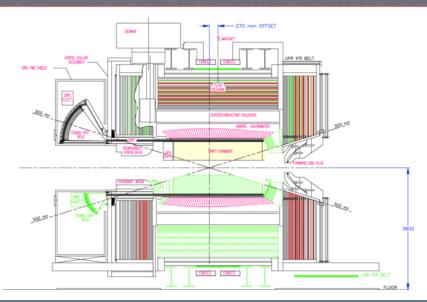
The SuperB factory Introduction 3 / 26

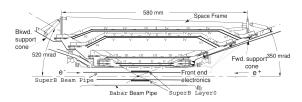

Tor Vegata Site

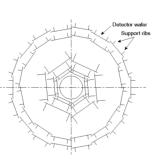

Important dates:

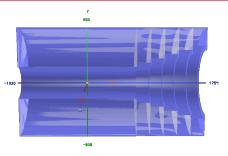
- 1 TDR: Autumn this year.
- 2 Colliding beams: June 2018.


Tor Vegata Site


Quest for Luminosity

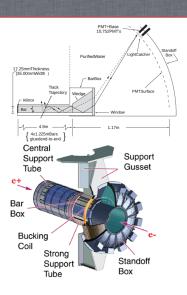

Quest for Luminosity


Recycling BaBar


Silicon Vertex Tracker (SVT)

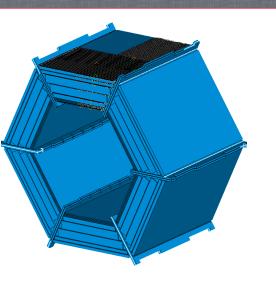
- Five layers(1-5) of double-sided silicon strip detectors
- Radial span 3 − 15 cm
- · Upgraded electronics for faster readout
- · Additional Layer 0:
 - 1 Radius $\approx 1.5cm$
 - 2 Low material budget: $X_0 = 0.5\%$
 - 3 Two candidate technologies: Hybrid Pixels and Double Sided Strip detectors (Striplets)

Drift Chamber (DCH)


- 40 layers of ≈ 1 cm cells parallel to beam line
- Provide momentum and $\frac{dE}{dx}$ for low momentum particles (p < 700 MeV)
- \approx 10000 channels
- Occupancy (3.5% 5%)

R&D:

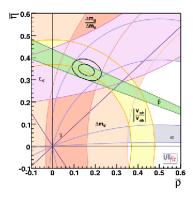
- Geometry
- Gas mixture


The SuperB factory Detector 10 / 2

Detector of Internally Reflected Cherenkov Light

- Momentum range 0.7 4GeV
- Radiator: synthetic fused silica
- Photon detectors outside field region
- Radiation hard

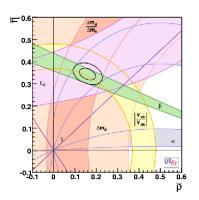
Electromagnetic and Hadronic Calorimeter


Electromagnetic Calorimeter:

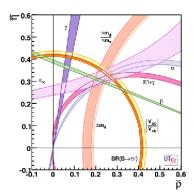
- Coverage 94%of4Π
- Csl or LYSO crystals
- Crystal length
 16 17.5X₀
- Radiation hard

Instrumented Flux Return:

- Upgrade form TDC to BIRO
- Scintillators
- Iron reused from BaBar
- SiPM


CKM Matrix

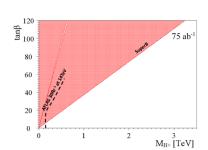
$$\Delta\overline{\eta}=0.016$$


$$\Delta \overline{
ho} = 0.028$$

CKM Matrix

$$\Delta \overline{\eta} = 0.016$$

$$\Delta \overline{\rho} = 0.028$$



$$\Delta \overline{\eta} = 0.0024$$
 $\Delta |V_{cb}|_{incl} = 0.5\% \ \Delta |V_{cb}|_{excl} = 1.0\%$
 $\Delta \overline{\rho} = 0.0028$
 $\Delta |V_{ub}|_{incl} = 1.0\% \ \Delta |V_{ub}|_{excl} = 3.0\%$

Precise SM prediction:

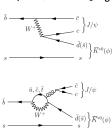
$$Br(B o I
u) = rac{G_F^2 \dot{m}_B}{8 \pi} m_I^2 (1 - rac{m_I^2}{m_B^2}) f_B^2 |V_{ub}|^2 au_B$$

In SUSY:
$$Br(B \to l\nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 (1 - \frac{m_l^2}{m_B^2}) f_B^2 |V_{ub}|^2 \tau_B (1 - \frac{tan^2 \beta}{1 + \overline{\epsilon} tan \beta} \frac{m_B^2}{m_H^2})$$

Time-Dependent CP (TDCP)

Time-dependent CP analysis can show signs of new physics. One has to study a set of modes:

 $b \rightarrow s\overline{s}c, \, b \rightarrow s$


Current experimental results show $\Delta(SM - Observed)$:

 $\Delta sin(2\beta) = 2.7\sigma$, penguin

 $\Delta sin(2\beta) = 2.1\sigma$, tree

Golden modes in SuperB: $B \to J/\psi K^0$, $B \to \eta' K^0$, $B \to f_0 K_s^0$

Mode	Current Precision			Predicted Precision (75 ab ⁻¹)		
	Stat.	Syst.	$\Delta S^f(\text{Th.})$	Stat.	Syst.	$\Delta S^f(Th.)$
$J/\psi K_S^0$	0.022	0.010	0 ± 0.01	0.002	0.005	0 ± 0.001
$\eta' K_S^0$	0.08	0.02	0.015 ± 0.015	0.006	0.005	0.015 ± 0.015
$\phi K_S^0 \pi^0$	0.28	0.01	-	0.020	0.010	_
$f_0K_S^0$	0.18	0.04	0 ± 0.02	0.012	0.003	0 ± 0.02
$K_{S}^{0}K_{S}^{0}K_{S}^{0}$	0.19	0.03	0.02 ± 0.01	0.015	0.020	0.02 ± 0.01
ϕK_S^0	0.26	0.03	0.03 ± 0.02	0.020	0.005	0.03 ± 0.02
$\pi^{0}K_{S}^{0}$	0.20	0.03	0.09 ± 0.07	0.015	0.015	0.09 ± 0.07
ωK_S^0	0.28	0.02	0.1 ± 0.1	0.020	0.005	0.1 ± 0.1
$K^+K^-K^0_S$	0.08	0.03	0.05 ± 0.05	0.006	0.005	0.05 ± 0.05
$\pi^{0}\pi^{0}K_{S}^{0}$	0.71	0.08	-	0.038	0.045	_
ρK_S^0	0.28	0.07	-0.13 ± 0.16	0.020	0.017	-0.13 ± 0.16

$$B o X_s \gamma$$

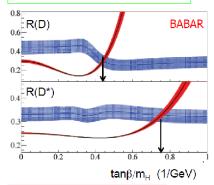
Very important probe for new physics! Current experimental average:

$$Br(B \to X_s \gamma) = (3.52 \pm 0.23 \pm 0.09)10^{-4}$$

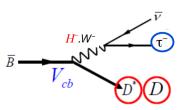
Theoretical prediction from NNLO:

$$Br(B \to X_s \gamma) = (3.15 \pm 0.23)10^{-4}$$

There are two ways to study this decay:


- 1 Exclusive:
 - The earliest results were done using a large number of exclusive decays, which were fully reconstructed
 - · Errors arising from unseen modes
 - Obsolete for SuperB
- 2 Inclusive:
 - Use tagging to tag the other B
 - No requirements on X_s
 - Disadvantage: Cut on photon energy
 - Effort to keep the cut as small as possible

Experimentally challenging to measure inclusive decays.


B Rare Decays

$$\mathrm{B}^\pm
ightarrow \mathrm{D}^{(*)} au^\pm
u$$

Babar ref. arXiv:1205.5442

Hot decay for SuperB!

Observables:

•
$$R(D) = \frac{B \to D\tau\nu}{B \to D\ell\nu}$$

•
$$R(D) = \frac{B \to D\tau\nu}{B \to D\ell\nu}$$

• $R(D^*) = \frac{B \to D^*\tau\nu}{B \to D^*\ell\nu}$

	<i>R</i> (D)	$R(D^*)$
BaBar	0.440 ± 0.071	0.332 ± 0.029
SM	0.297 ± 0.017	0.252 ± 0.003
Difference	2.0σ	2.7σ

B_s Decays

 B_s is clearly LHCb domain Short runs at CLEO and Belle showed that $e^+\ e^-$ can also contribute in B_s studies

Observable	Error on 1fb ⁻¹	Error on 30fb ⁻¹
$\Delta\Gamma[ps^{-1}]$	0.16	0.03
$eta_{ m s}$ from ${ m B_s} ightarrow { m J}/\psi \phi [{ m deg}]$	16	6
β_s from $B_s o K\overline{K}^0$ [deg]	24	11
$\left \frac{V_{td}}{V_{ts}} \right $	0.08	0.017

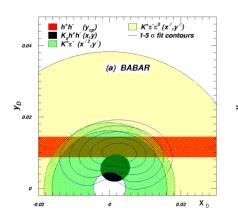
Potentials in SuperB:

- 1 Decays with neutral particle $B_s \to J/\psi \eta$, $B_s \to K_S^0 \pi$, $B_s \to D^*K_S^0$, $B_s \to \Phi \eta'$
- 2 Measurements of $\mathcal{B}(B \to \gamma \gamma)$. SM prediction $\mathcal{B}(B \to \gamma \gamma) = (2-4) \times 10^{-7}$. NP (SUSY) $\mathcal{B}(B \to \gamma \gamma) = 5 \times 10^{-6}$.
- 3 Measurements of semi-leptonic asymmetry. $A_{SL}^s = \frac{1 \left| \frac{q}{p} \right|^4}{1 + \left| \frac{q}{p} \right|^4} = \frac{N_1 N_2}{N_1 + N_2}$ $N_1 = B_s \to \overline{B}_s \to D_s^{*-}\ell^+\nu \ N_2 = B_s \to \overline{B}_s \to \overline{D}_s^*\ell^-\nu$

Charm Physics

- **1** Plan for running at $\psi(3770)$ threshold
- 2 Scenario: Collect 500fb⁻¹
- O tag possible; other meson can be studied with very small background

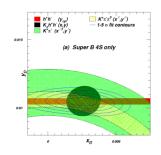
Potential improvement from SuperB:

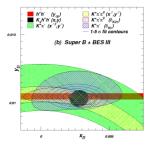

- Improved measurement of the mixing parameters x_D and y_D
- CP violation in $\overline{D} \overline{D}$: $A_{SL} = \frac{N_1 N_2}{N_1 + N_2}$ $N_1 = \Gamma(D^0 \to \ell^- \nu K^+),$

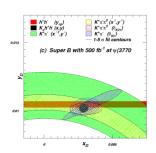
$$N_1 \equiv \Gamma(\underline{D}^0 \to \ell^+ \nu K^-)$$

 $N_2 = \Gamma(\overline{D}^0 \to \ell^+ \nu K^-)$

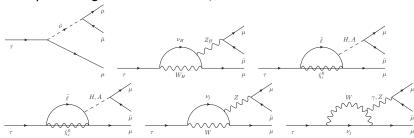
- Search for $D^0 o \mu\mu$
- Quantum correlations allow one to measure relatively strong phase

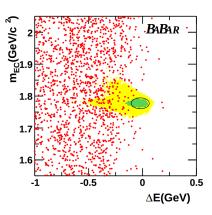

The SuperB factory Physics 19 / 26


Charm Physics

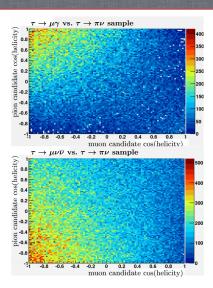


Charm Physics

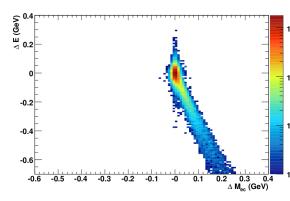



Lepton Flavor Violation (LFV)

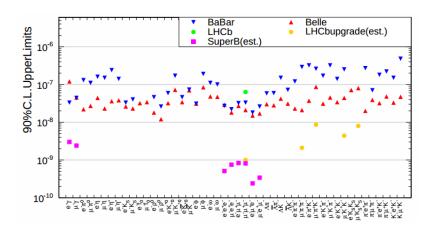
- LFV can occur in SM due to neutrino masses
- Any observation is evidence of new physics
- Most promising channels: $\tau \to I\gamma$, $\tau \to III$.


$au o l \gamma$ Sensitivity

- Better tracking resolution, increased Δm – ΔE box by 65%
- Higher photon efficiency
- Increase of geometry acceptance
- Thicker signal peak
- Smaller boost improves the performance of the fit


Polarization

- 1 SuperB will have polarized electron beam (80%)
- One can use this information in NP searches
- 3 Preliminary results:
 - Upper limit at 90%: 2.44×10^{-9}
 - 3σ observation: 5.50×10^{-9}



Current analysis:

- Calculate the thrust axis
- Semi tag the second au
- Limit obtained (90%) $Br(\tau \rightarrow 3\mu) = 8.1 \times 10^{-10}$

LFV Summary

CP Violation

- CP violation has never been observed in τ sector
- SM prediction is negligibly small $O(10^{-12})$ / in $au^\pm o K^{pm} \pi^0
 u$.
- Any observation is clear indication of NP
- Very few NP models can explain this:
 - 1 RPV SUSY
 - 2 Multi Higgs models
- SuperB can improve sensitivity 75 times compared to CLEO

au Electric Dipole Moment (EDM)

 τ EDM can be measured with single angle differential cross section $e^{+}e^{-} \rightarrow \tau^{+}\tau^{-}$.

- Improvement using polarized beam
- Achievable sensitivity: 10⁻¹⁹ecm