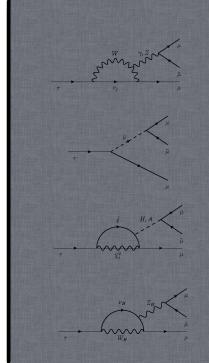

The SuperB factory physics prospects and project status

Marcin Chrząszcz

Institute of Nuclear Physics, Polish Academy of Science, on behalf of the SuperB collaboration

21st September 2012

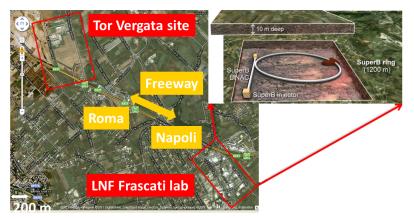

Introduction

SuperB Infrastructure

B Physics

Precision Measurements TDCP $B \rightarrow X_s \gamma$ B_s Decays Charm Physics

au Physics LFV au g - 2EDM at SuperB EDM at SuperB CP Violation

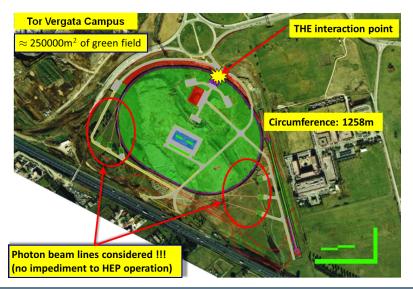

B factories

B factories have contributed to many important physics discoveries over the last decade. They will be succeeded the Super Flavor Factories:

Super Flavor Factories

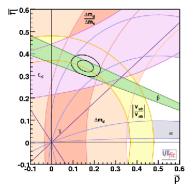
- 1 Data 75*ab*⁻¹
- **2** Luminosity $10^{36} cm^{-2} s^{-1}$
- **③** Flexibility to run on charm threshold with luminosity $10^{35} cm^{-2} s^{-1}$
- 4 Longitudinal polarization of electron beam 80%
- Oppraded BaBar detector
- 6 Start of data taking: 2018
- ⑦ 10ab⁻¹ per year

Tor Vergata Site

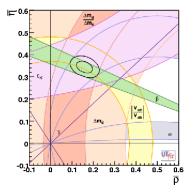


Important dates:

- 1 TDR: Autumn this year.
- 2 Colliding beams: June 2018.


The SuperB factory

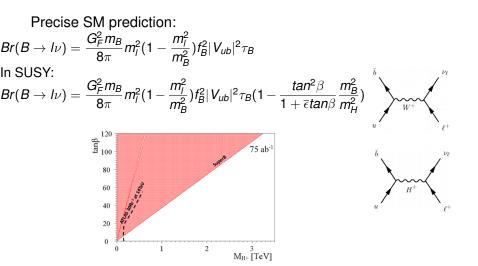
Tor Vergata Site


The SuperB factory

CKM Matrix

 $\Delta \overline{\eta} = 0.016$ $\Delta \overline{
ho} = 0.028$

CKM Matrix


$$\Delta \overline{\eta} = 0.016$$

 $\Delta \overline{
ho} = 0.028$

$$\begin{split} &\Delta \overline{\eta} = 0.0024 \\ &\Delta |V_{cb}|_{incl} = 0.5\% \; \Delta |V_{cb}|_{excl} = 1.0\% \\ &\Delta \overline{\rho} = 0.0028 \\ &\Delta |V_{ub}|_{incl} = 1.0\% \; \Delta |V_{ub}|_{excl} = 3.0\% \end{split}$$

The SuperB factory

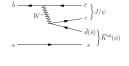
B Physics

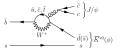
 $\rightarrow \tau \nu$

Time-Dependent CP (TDCP)

Time-dependent CP analysis can show signs of new physics. One has to study a set of modes:

 $b
ightarrow s \overline{s} c, \, b
ightarrow s$


Current experimental results show Δ (SM - Observed):


 $\Delta sin(2\beta) = 2.7\sigma$, penguin

 $\Delta sin(2\beta) = 2.1\sigma$, tree

Golden modes in SuperB: $B \rightarrow J/\psi K^0$, $B \rightarrow \eta' K^0$, $B \rightarrow f_0 K_s^0$

Mode	Current Precision			Predicted Precision (75 ab ⁻¹)		
	Stat.	Syst.	$\Delta S^{f}(\text{Th.})$	Stat.	Syst.	$\Delta S^{f}(Th.)$
$J/\psi K_S^0$	0.022	0.010	0 ± 0.01	0.002	0.005	0 ± 0.001
$\eta' K_S^0$	0.08	0.02	0.015 ± 0.015	0.006	0.005	0.015 ± 0.015
$\phi K_S^0 \pi^0$	0.28	0.01	_	0.020	0.010	-
$f_{0}K_{S}^{0}$	0.18	0.04	0 ± 0.02	0.012	0.003	0 ± 0.02
$K^{0}_{S}K^{0}_{S}K^{0}_{S}$	0.19	0.03	0.02 ± 0.01	0.015	0.020	0.02 ± 0.01
ϕK_S^0	0.26	0.03	0.03 ± 0.02	0.020	0.005	0.03 ± 0.02
$\pi^0 K_S^0$	0.20	0.03	0.09 ± 0.07	0.015	0.015	0.09 ± 0.07
ωK_S^0	0.28	0.02	0.1 ± 0.1	0.020	0.005	0.1 ± 0.1
$K^{+}K^{-}K^{0}_{S}$	0.08	0.03	0.05 ± 0.05	0.006	0.005	0.05 ± 0.05
$\pi^0\pi^0K^0_S$	0.71	0.08	_	0.038	0.045	-
ρK_S^0	0.28	0.07	-0.13 ± 0.16	0.020	0.017	-0.13 ± 0.16

$B \rightarrow X_s \gamma$

Very important probe for new physics! Current experimental average: $Br(B \rightarrow X_s \gamma) = (3.52 \pm 0.23 \pm 0.09)10^{-4}$

Theoretical prediction from NNLO:

 $Br(B
ightarrow X_s \gamma) = (3.15 \pm 0.23) 10^{-4}$

There are two ways to study this decay:

- 1 Exclusive:
 - The earliest results were done using a large number of exclusive decays, which were fully reconstructed
 - Errors arising from unseen modes
 - Obsolete for SuperB
- 2 Inclusive:
 - Use tagging to tag the other B
 - No requirements on X_s
 - Disadvantage: Cut on photon energy
 - Effort to keep the cut as small as possible

Experimentally challenging to measure inclusive decays.

 B_s is clearly LHCb domain Short runs at CLEO and Belle showed that $e^+ e^-$ can also contribute in B_s studies Potentials in SuperB:

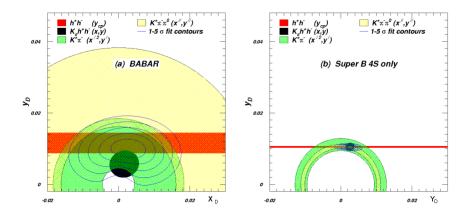
Observable	Error on 1fb ⁻¹	Error on 30fb ⁻¹
ΔΓ[ps ⁻¹]	0.16	0.03
β_s from $B_s \rightarrow J/\psi \phi[deg]$	16	6
β_s from $B_s \rightarrow K\overline{K}^0[deg]$	24	11
$\left \frac{V_{td}}{V_{ts}} \right $	0.08	0.017

1 Decays with neutral particle $B_s \rightarrow J/\psi\eta$, $B_s \rightarrow K_S^0\pi$, $B_s \rightarrow D^*K_S^0$, $B_s \rightarrow \Phi\eta'$

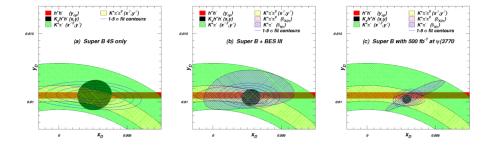
2 Measurements of $\mathcal{B}(B \to \gamma \gamma)$. SM prediction $\mathcal{B}(B \to \gamma \gamma) = (2 - 4) \times 10^{-7}$. NP (SUSY) $\mathcal{B}(B \to \gamma \gamma) = 5 \times 10^{-6}$.

Measurements of semi-leptonic asymmetry. $A_{SL}^{s} = \frac{1 - \left|\frac{q}{p}\right|^{4}}{1 + \left|\frac{q}{p}\right|^{4}} = \frac{N_{1} - N_{2}}{N_{1} + N_{2}}$

$$N_1 = B_s \rightarrow \overline{B}_s \rightarrow D_s^{*-}\ell^+ \nu \ N_2 = B_s \rightarrow \overline{B}_s \rightarrow \overline{D}_s^*\ell^- \nu$$


Charm Physics

- **1** Plan for running at ψ (3770) threshold
- 2 Scenario: Collect 500fb⁻¹
- O tag possible; other meson can be studied with very small background
- Potential improvement from SuperB:
 - Improved measurement of the mixing parameters x_D and y_D
 - CP violation in $\overline{D} \overline{D}$: $A_{SL} = \frac{N_1 N_2}{N_1 + N_2}$

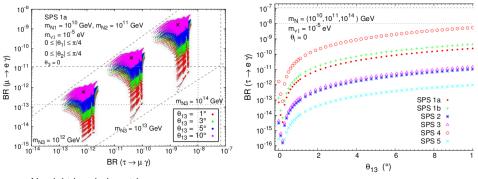

$$N_1 = \Gamma(\overline{\mathrm{D}^0} \to \ell^- \nu \mathrm{K}^-),$$

 $N_2 = \Gamma(\overline{\mathrm{D}^0} \to \ell^+ \nu \mathrm{K}^-),$

- Search for ${\rm D}^0
 ightarrow \mu \mu$
- Quantum correlations allow one to measure relatively strong phase

Charm Physics

Charm Physics

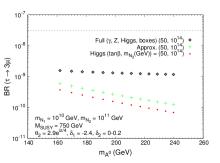


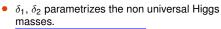
τ Physics

Lepton Flavaur Violation

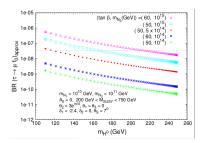
- Some SUSY model can occure in SuperB sensitive.
- Complementary to searches in LHC and MEG.
- Golden channels: $\tau \to 3\ell, \tau \to \ell\gamma, \tau \to \rho\ell, \tau \to \ell\eta$.
- **2** *τ* **g** − **2**
 - MSSM can explain 3×10^{-9} discrepancy.
 - SuperB sensitivety is in range of doing this.
- **3** τ EDM and CPV
 - In SuperB sensitivity!
 - τ EDM constrained by electron EDM upper limit to a range inaccessible by SuperB

CMSSM Model




- N_i right handed neutrinos
- ν_i left handed neutrinos
- \$\phi_i\$ complex mixing angle
- ϕ_{13} PNMS matrix.

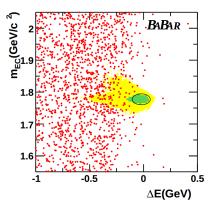
- LFV up to present limit
- $\tau \rightarrow \mu \gamma$ complementary to $\mu \rightarrow e \gamma$


JHEP11(2006)090

NUHM Model

arXiv:0812.2692v1

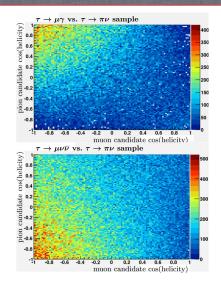
• Increase sensitivity for $\tau \rightarrow f_0(980)\mu, \tau \rightarrow \eta\mu$, than to $\tau \rightarrow \mu\gamma$


JHEP11(2006)090

SuperB sensitivity

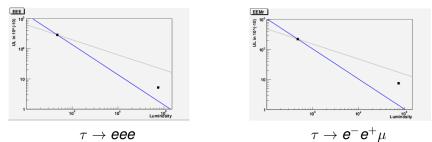
- 1 Taking the BaBar analysis results and improving: $\sqrt{\mathcal{L}_{SuperB}/\mathcal{L}_{BaBar}} \approx 12$
- 2 Signal is rising linearly: $\mathcal{L}_{SuperB}/\mathcal{L}_{BaBar}$
- 3 Sensitivety increases with detector resolution.
- 4 Babar papers used to extrapolate:
 - Phys.Rev.Lett.104:021802,2010, arXiv:0908.2381v2
 - PhysRevD.81.111101(2010), arXiv:1002.4550v1

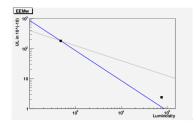
$au ightarrow \ell \gamma$ Sensitivity


- Better tracking resolution, reduced Δm – ΔE box by 65%
- Higher photon efficiency
- Increase of geometry acceptance
- Thicker signal peak
- Approximate frequentistic upper limits, only Poissonian BKG uncertainty.
- Smaller boost improves the performance of the fit.

	Process	Error on 90% upper limit	3σ observation
SuperB limits:	$\tau \to \mu \gamma$		$5.4 imes10^{-9}$
	$\tau \rightarrow \mathbf{e} \gamma$	$3.0 imes10^{-9}$	$6.8 imes10^{-9}$

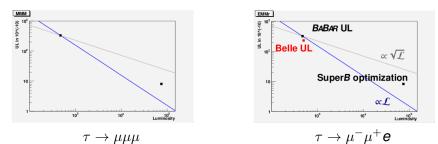
Polarization

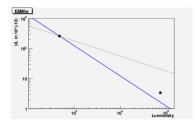

- SuperB will have polarized electron beam (80%)
- 2 One can use this information in NP searches
- 3 TAUOLA SUSY decay model.
- Oiscriminating between NP models!


SuperB sensitivity for $\tau \rightarrow 3\ell$

- 1 Taking the BaBar analysis results and improving:
 - $\sqrt{\mathcal{L}_{SuperB}/\mathcal{L}_{BaBar}} \approx 12$
- 2 Signal is rising linearly: $\mathcal{L}_{SuperB}/\mathcal{L}_{BaBar}$
- 3 No detector resolution assumed.
- Approximate frequentistic upper limits, only Poissonian BKG uncertainty
- **5** Babar papers used to extrapolate:
 - Phys.Rev.Lett.104:021802,2010, arXiv:0908.2381v2
 - PhysRevD.81.111101(2010), arXiv:1002.4550v1

 $au
ightarrow \mathbf{3\ell}$


 $\tau \rightarrow \textit{eee}$


 $\tau \rightarrow e^- e^- \mu$

The SuperB factory

 $au
ightarrow 3\ell$

$$\tau
ightarrow \mu \mu \mu$$

 $\tau \rightarrow \mu^- \mu^- e$

The SuperB factory

20 / 28

Current analysis:

- SuperB will be the cutting age factory for LFV in τ decays.
- Beam polarization will improve the the analysis and make distinguishing among NP models possible.

Process	Error on 90% upper limit	3σ observation
		$5.4 imes10^{-9}$
$\tau \to \boldsymbol{e}\gamma$	$3.0 imes 10^{-9}$	$6.8 imes10^{-9}$

- MSSM would shift muon g 2 by about the presently observed discrepancy $\Delta a_{\mu} \approx 3 \times 10^{-9}$.
- SuperB sensitivity estimates: $\sigma(a_{\tau}) = 2.6 \times 10^{-6}$. JHEP098P1108
- SuperB measures $a_{\tau}(q^2)$ from final state distributions of $e^+e^- \rightarrow \tau^+\tau^-$ See M.Passera talk
- Luckly NP contributions are constant for small q^2 .

EDM at SuperB

- Experimental status: $|d_e| < 1.6 \times 10^{-27}$. PhysRevLett.88.071805
- NP expect: $|d_{ au}| \propto (m_{ au}/m_e) |d_e|$
- SuperB upper limit $|d_e| \approx 10^{-22}$ SuperB 2010 Physic Report
- Again we measure $|d_e|(q^2)$.
- Luckly NP contributions are constant for small q^2 .

EDM at SuperB

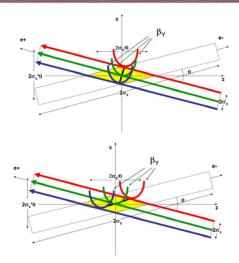
Belle result:

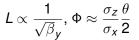
- **1** 29.5 fb^{-1} data sample
- **2** Resolution: $0.9 1.7 \times 10^{-19} ecm$
- 3 J. Bernabeu hep-ex/0210066
- 4 Extrapolation for SuperB (75 ab^{-1}): $\sigma(d_{\tau}) = 17 34 \times 10^{-17} ecm$.

6 No beam polarization assumed!

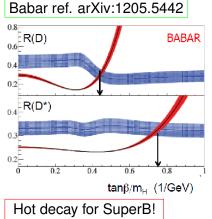
Other aproach: arXiv:0707.1658v1

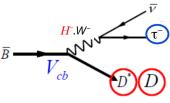
- Assume beam polarity: (80 \pm 1).
- 80% geometry acceptance.
- Track reconstrucion 97.5%.
- $\sigma(d_{\tau}) \approx 10 \times 10^{-17} ecm$


CP Violation


- CP violation has never been observed in τ sector
- SM prediction is negligibly small $O(10^{-12})$ / in $\tau^{\pm} \rightarrow K^{pm} \pi^0 \nu$.
- Any observation is clear indication of NP
- Very few NP models can explain this:
 - 1 RPV SUSY
 - 2 Multi Higgs models
- SuperB can improve sensitivity 75 times compared to CLEO ($\xi(\tau \rightarrow K_s \pi \nu = -2.0 \times 10^{-3}$

Backup


Quest for Luminosity



B Rare Decays

$$B^{\pm} \rightarrow D^{(*)} \tau^{\pm} \nu$$

Observables:

•
$$R(D) = \frac{B \rightarrow D\tau\nu}{B \rightarrow D\ell\nu}$$

• $R(D^*) = \frac{B \rightarrow D^*\tau\nu}{B \rightarrow D^*\ell\nu}$

	<i>R</i> (D)	$R(D^*)$
BaBar	0.440 ± 0.071	0.332 ± 0.029
SM	0.297 ± 0.017	0.252 ± 0.003
Difference	2.0 σ	2 .7 <i>σ</i>

The SuperB factory

28 / 28