Tauola development

Marcin Chrząszcz^{1,2}

 1 University of Zurich, 2 Institute of Nuclear Physics, Krakow

July 20, 2014

Where are we?

Where are we?

- I started from simple FD
- Ultimate goal is to combine it with Bayesian.
- There are fiew tools on the market: RooStats, CLs(tom Junk), BAT, and more.
- One worse then the other....
- Decided: write own toy and check with RooStats(worse decision in my life).

Assumtions:

- Don't combine limits if there is an order of magnitude difference.
- Don't take LHCb yet into account.

Results from FD

Results from FD

- Don't trust fully this results.
- With to many toys, RooStats is starting to get crazy.
- Also with to large range for scanning the Br.
- After 4 days of banning my head what this idiot does, I scheduled a meeting with an CMS expert.
- With medium range and medium toys I am getting similar results to my toy model.
- Also have feeling RooStats is not doing systematics correct...

TOY model

- For given Br, for each experiment(Babar and Belle) in toy loop:
 - Choose efficiency from Gaussian PDF: $\epsilon, \delta \epsilon$.
 - Choose Background accordingly to Gaussian PDF: n_{bkg} , δn_{bkg} .
 - Now we have n_{bkg} , and n_{sig} . The can now calculate the probability of two experiments(babar and belle) and multiply it in both cases fixing n_{obs} .
 - After the toys we can calculate the mean probability is taken.
 - Stop procedure when mean < 0.1.
- $\bullet~\mbox{Resonable}~0.1\times10^{-8}$ agreement between this and FD in RooStats.
- Bayesian calculator in RooStats gives correct results only assuming no background scenario...
- Lots of understanding on the table.

Tauola follow up $\tau^- \rightarrow \mu^- \mu^- e^+$

- In theory paper they presented explicite new models for $\tau \rightarrow 3\mu$ and $\tau \rightarrow \mu^{-}\mu^{+}e^{-}$.
- After sleeping with this I thought it would be bad idea not to have them for remaining 4: $\tau \rightarrow \mu^{-}\mu^{-}e^{+}$, $\tau \rightarrow 3e$, $\tau \rightarrow e^{-}e^{+}\mu^{-}$, $\tau \rightarrow e^{-}e^{-}\mu^{+}$
- For $\tau \to 3e$ it's extremely easy to derive the operator from $\tau \to 3 \mu$.
- The same for: $\tau \rightarrow e^- e^+ \mu^-$ from $\tau \rightarrow \mu^- \mu^+ e^-$.
- For the $\tau\mu^-\mu^-e^+$ and $\tau \to e^-e^-\mu^+$ required more dancing and talking to theorists.
- In the and there are only two operators(radiative ones don't exist for this decays).

Tauola follow up

- Have all the modes :)
- Can rest in peace from coding in FORTRAN.

