$B ightarrow Ke \mu$ analysis

Marcin Chrząszcz mchrzasz@cern.ch

Zurich meeting, CERN September 24, 2014

Motivation

- There are number of papers linking the $B^0 \to K^* \mu^- \mu^+$ and R_k anomalies with LFV.
- The main reason is that if you have LU breaking the LFV bracking scale in natural way should be close.
- A lot of groups concentrate their affords of $B^0 \to K \tau \mu$.
- In my opinion the $B \to K e^- \mu^+$ might be a better candidate.
- You loose a factor of 10 because the of the hierarchical structure of NP, but you can this back because of τ branching fraction.
- ... and still you do not have the neutrinos to worry about.

Stripping

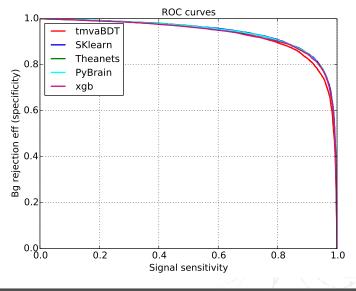
- Another nice thing about the $B \rightarrow K \mu e$ is the fact we have all the stripping lines there.
- Stripping lines used:
 - LFVLinesB2heMuLine
 - LFVLinesBu2KJPsieeLine
 - Bs2MuMuLinesBu2JPsiKLine

Stripping

Daughter particles	
MIPCHI2DV	> 25
TRCHI2DOF	< 3
TRGHOSTPROB	< 0.3
PIDe	> 2

B particles	
VFASPF(VCH12/VDOF)	< 9
Δm	< 600
BPVDIRA	> 0
BPVVDCHI2	> 225
BPVIPCHI2	< 25

MVA training

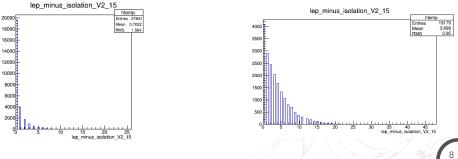

- The main reason for the talk is this one ;)
- Thanks to kaggle we know what are the most useful ML frameworks:
 - Sklearn
 - XGBoost
 - Theanets
 - Neurolab
 - Pybrain
- There is a developing framework for simultaneous training of this all this classifiers: https://github.com/yandex/rep
- python based, for last 2 weeks was playing with it.

This has a couple of nice features:

- Build in k-Folding technique (DONE).
- Build in classifier and cut optimization (DONE).
- Build in parallelization (testing).

Something to piss up Jampi

A first test I did is to compare our old tmva with the other classifiers:



Marcin Chrząszcz (Universität Zürich)

/9

Isolations

- I decided to reuse the isolations created for $B^0 \to K^* \mu^- \mu^+$.
- The isolations are now generalized and work for all: $B \to K J/\psi(\ell \ell').$
- Since the lines I am using are present in Stripping 20 I don't need to wait for any MDSTS rerunning.
- This variable was quite powerfull in $B^0\to K^*\mu^-\mu^+$ and had specially designed data-mc agreement.

Sum up

- Last jobs with control channels are finishing.
- Work starting but looks promising.
- Finish the nasty DaVinci stuff.
- Still want to play with the full optimization of the MVA.
- Will start calibrating mass.

Backup

¹⁰/9