Unfolding for counting experiments

Marcin Chrząszcz^{1,2}, Nicola Serra¹

¹ University of Zurich, ² Institute of Nuclear Physics, Krakow

June 30, 2014

Reminder 1 - Constructing Matrix unfolding

- We don't know explicate
- I have proven some time ago that the matrix exist

$$\epsilon(\cos\theta_k,\cos\theta_I,\phi) \tag{1}$$

- I have proven some time ago that the matrix exist
- Now a systemic way to produce it.
- Let's use PHSP MC.
- Moments for PHSP MC are: $v_{gen}^{T} = (2/3, 0, 0, 0, 0, 0, 0, 0)$
- After reconstruction we get(full q² range): v_{rec}^T = (0.7069, 0.0077, -0.00236466, 0.0005, 0.0007, 0.0011, 0.0011, -0.0012)

Reminder 2 - Constructing Matrix unfolding

• We got first column of the unfolding matrix $(\frac{3}{2}v_{gen})$.

/ 1.06		$a_{1,8}$
0.01157		a _{2,8}
-0.003547	•.	÷
0.0007841	·	÷
0.001126	·	÷
0.001766	·	÷
0.001664	•••	:
-0.001937	• • •	a _{8,8} /

- How about the others?
- We can reweight accordingly to f_{χ} .

Reminder 3 - Constructing Matrix unfolding

- To get S_3 each event i^{th} has has weight $f_{S_3}(\cos \theta_{k_i}, \cos \theta_{l_i}, \phi_i)$
- One can calculate on MC the reweighed moments in PHPS:

$$\int PDF * f_{S_3} = \frac{32}{225}$$
(2)

- Our base vector now is: $v_{gen}^T = (0, \frac{32}{225}, 0, 0, 0, 0, 0, 0, 0)$
- So lets see what do we get as reconstructed vector(after multiplying by $\frac{225}{32}$. $v_{rec}^{T} = (0.042, 1.105, -0.005, 0.003, -0.0023, -0.005, -0.005, -0.006)$
- Please notice that weights are negative, but this is not a problem for the mean.
- Also we are avoiding the negative PDF problem :)

Reminder 4 - Constructing Matrix unfolding

• Now the matrix looks like:

<pre>/ 1.06 0.01157</pre>	0.042 1.105	 	a _{1,8} a _{2,8}
-0.003547	-0.005	·	÷
0.0007841	-0.005	·	÷
0.001126	0.003	·	÷
0.001766	-0.0023	·	÷
0.001664	-0.005	·	÷
	-0.006		a _{8,8} /

- The others go in the same way.
- Repenting this exercise from 1st year algebra we can get the full matrix

For now:

- We have proven that there has to exists unfolding matrix.
- Shown how to construct transformation matrix: $Gen \rightarrow Reco$.
- Inverting it we can have transformation matrix of $Reco \rightarrow Gen$.
- For details: LINK

What is missing?

- So lets say that transformation matrix: Gen \rightarrow Reco is $\epsilon_{i,j}$.
- Each element has an error: $\delta \epsilon_{i,j}$.
- Then we can calculate the matrix: $\epsilon_{i,i}^{-1}$ (assuming it exists).
- The million dollar question is what is the error on inverted matrix?

- One can toy it.
- But toying is good for kids and Frequentist.

- One can toy it.
- But toying is good for kids and Frequentist.
- Solution comes from au physics :) hep-ex/9909031
- One can derive(prove in the paper) the general equation:

$$\delta \epsilon_{\alpha \ \beta}^{-1} = [\epsilon^{-1}]_{\alpha i}^2 [\delta \epsilon]_{jj}^2 [\epsilon^{-1}]_{j\beta}^2 \tag{3}$$

Matrix, 1.1 - 2 GeV

Α	$r_{eco \rightarrow gen} =$							
	/ 0.9519	-0.02665	-0.01432	0.002356	0.02539	0.009878	-0.01551	-0.01874 \
	-0.006272	0.8122	-0.00351	-0.00719	0.003585	6.784e – 05	0.02445	0.008515
	-0.005315	-0.003716	1.048	0.01242	0.01209	-0.01478	-0.001956	0.01429
	0.003237	-0.007177	0.01533	0.9184	-0.007548	-0.0009818	-0.01874	0.009407
	0.01002	0.004084	0.01391	-0.006509	1.194	-0.006516	0.001536	-0.02882
	0.002695	-0.001042	-0.01721	-0.001842	-0.005643	0.9264	0.02106	0.006755
	-0.004736	0.02346	-0.002335	-0.01446	0.001169	0.01697	1.072	-0.003191
	-0.004157	0.007576	0.01377	0.008058	-0.02219	0.005354	-0.0008608	0.8304 /

	/0.005202	0.01911	0.03258	0.02103	0.02252	0.02145	0.03366	0.01948
$\delta A_{reco \rightarrow gen} =$	0.006648	0.04654	0.03227	0.02451	0.03602	0.02464	0.03298	0.03397
	0.007557	0.03197	0.07845	0.04272	0.04744	0.03057	0.05698	0.03287
	0.007902	0.03885	0.0678	0.04839	0.0384	0.03464	0.04925	0.03989
	0.009015	0.04122	0.06374	0.03254	0.07349	0.03269	0.0649	0.04202
	0.007939	0.0389	0.04793	0.03433	0.03828	0.04937	0.06985	0.04023
	0.007651	0.03234	0.05611	0.03062	0.04776	0.04388	0.08157	0.03342
	0.006719	0.03345	0.03868	0.02953	0.03633	0.03002	0.03989	0.04827/

What did go wrong?

- The errors are 2 3%, which is very worrying.
- WG got very worried what is going on with the errors :(
- Started debugging.
- After sleeping with the problem found a stupid:

for(int i=0;i < entries/10;++i)</pre>

• Ok, I am an idiot, and used 10% of statistics.

What did go wrong 2 ?

- The errors are tricky. When you re-weight you have negative weights.
- So I change the normal error

$$\hat{\sigma}^{2} = \frac{\sum w_{i}}{(\sum w_{i})^{2} - \sum w_{i}^{2}} \sum w_{i} (x_{i} - \hat{\mu})^{2}$$
(4)

$$\hat{\sigma}^2 = \frac{\sum |w_i|}{(\sum |w_i|)^2 - \sum w_i^2} \sum |w_i| (x_i - \hat{\mu})^2$$
(5)

• And this I am not 100% sure if I is ok =(

What did go wrong 3 ?

- There is a hack of this method:
- "You can cheat on your gf, you can cheat on tax, but you can't cheat on \sqrt{n} "¹.

- We can use this:
- Divide the MC in 10. Then calculate the variance of each matrix element. And divide/multiply by √10 and see if the errors are ok.

¹All rights reserved!

Marcin Chrząszcz (UZH, IFJ)

What did go wrong 3 ?

OLD (can be w	rong):							
	/0.005477	0.02348	0.03125	0.02305	0.01871	0.02307	0.03124	0.02339\
	0.008142	0.06734	0.03621	0.03126	0.0352	0.03131	0.03624	0.04767
	0.007168	0.0359	0.06856	0.0423	0.03619	0.02995	0.04856	0.03585
5.4	0.008573	3 0.04966	0.06736	0.05471	0.03332	0.03886	0.04784	0.04973
$oA_{gen \rightarrow reco} =$	0.007599	0.04063	0.04926	0.02847	0.04998	0.02841	0.04923	0.04059
	0.008582	0.04977	0.04768	0.03878	0.03323	0.05499	0.0676	0.04974
	0.007136	5 0.03571	0.04833	0.02987	0.036	0.04225	0.06843	0.0358
	\0.008162	0.04782	0.04294	0.03731	0.03527	0.03738	0.04306	0.06736/
New:								
$\delta A_{gen \rightarrow reco} =$								
/0.006659	0.0299	0.02207	0.01802	0.02657	0.02196	0.02851	0.02507	
0.00708	0.02046	0.007998	0.0133	0.008828	0.01236	0.01505	0.0149	
0.008469	0.00845	0.01806	0.01442	0.009856	0.008895	0.01389	0.01155	
0.008938	0.01569	0.01798	0.01801	0.009195	0.01097	0.01108	0.02068	
0.007867	0.0109	0.01248	0.0088	0.01104	0.0114	0.01256	0.01097	
0.008078	0.01582	0.01117	0.01093	0.01135	0.01215	0.02122	0.01774	
0.008368	0.01521	0.01391	0.008972	0.009797	0.01702	0.0147	0.01086	
\0.005745	0.01561	0.0114	0.01649	0.008631	0.01373	0.01051	0.01792/	

Summary

- I really fu.. this thing ...
- No coding after 3 am form now!

Marcin Chrząszcz (UZH, IFJ)