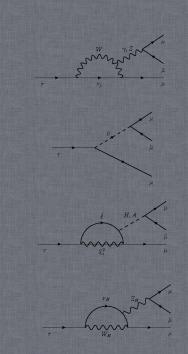
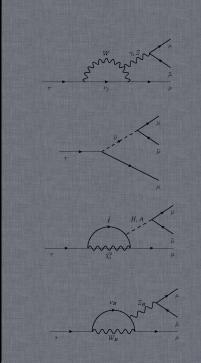
Updates on activities.


Marcin Chrząszcz^{1,2}, Nicola Serra¹

¹ University of Zurich, ² Institute of Nuclear Physics, Krakow,

30th July 2013

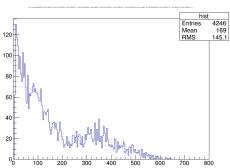

Inflaton analysis
MC samples
Normalization Channel

MC studies

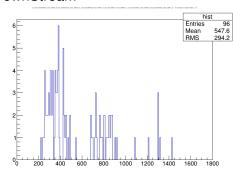
 η fits

TMVA

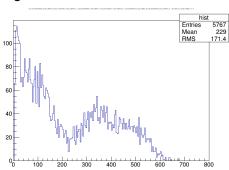
Plans for next week

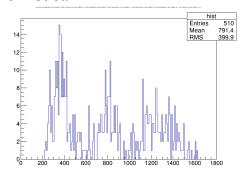

MC Samples

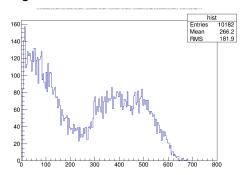
To Study the behaviour of signal I am producing MC samples with different Inflaton life time:

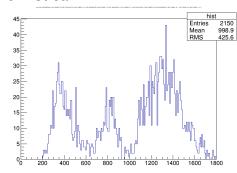

- 1 1×10^{-10} s
- $2.5 \times 10^{-10} s$
- $3.5 \times 10^{-10} s$
- 4 7.5×10^{-10} s
- **5** 10×10^{-10} s

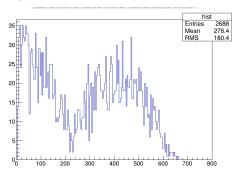
All done. 🙂

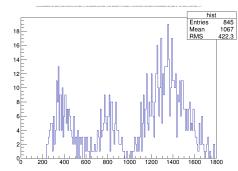

Life Time: 10⁻¹⁰ sec Long Tracks

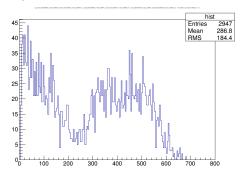

DownStream

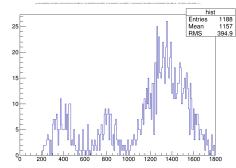

Life Time: $2.5 \times 10^{-10} sec$ Long Tracks


DownStream


Life Time: $5 \times 10^{-10} sec$ Long Tracks


DownStream

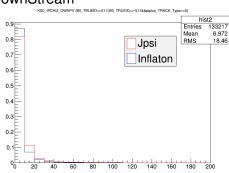

Life Time: $7.5 \times 10^{-10} sec$ Long Tracks


DownStream

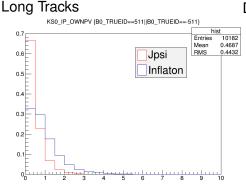
Life Time: $10 \times 10^{-10} sec$ Long Tracks

DownStream

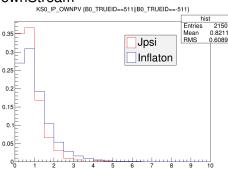
For the first idea we wanted to use $B^0 \to J/\psi K_s$. I had to compare how K_s imitates our signal inflaton on MC.:


IPCHI2 Long Tracks

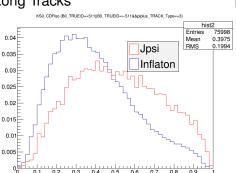
0.6

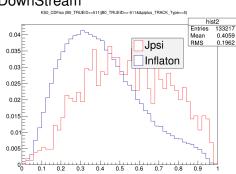

0.4

0.3


0.2

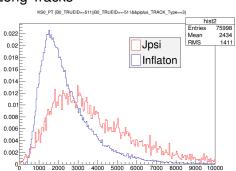
For the first idea we wanted to use $B^0 \to J/\psi K_s$. I had to compare how K_s imitates our signal inflaton on MC.:

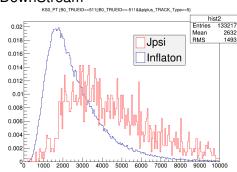

DownStream



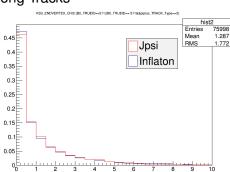
M.Chrząszcz, N.Serra 2013

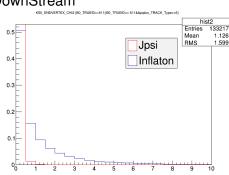
For the first idea we wanted to use $B^0 \to J/\psi K_s$. I had to compare how K_s imitates our signal inflaton on MC.:


Cone isolation Long Tracks



For the first idea we wanted to use $B^0 \to J/\psi K_s$. I had to compare how K_s imitates our signal inflaton on MC.:


Long Tracks



For the first idea we wanted to use $B^0 \to J/\psi K_s$. I had to compare how K_s imitates our signal inflaton on MC.:

Vtx Chi2 Long Tracks

Summary on inflaton

- 1 Bid difference between control channel and signal S
- 2 Different control channel? Some Λ channel?
- 3 Reweigh MC?

Reminder:

- In 2011 we simulated a mixture of $\tau \rightarrow 3\mu$.
- We found out that the cross section is wrong in MC.
- We reweighed all this distributions to match the correct cross section.
- But what with DPC? This can't be reweighed!
- Let's check how ϵ_{DPC} depends on signal channel.

Update on analysis MC studies 7 / 25

Cross check procedure

Let's run Pythia6 with 8 TeV CM energy. With old decfile(aka the wrong mixture of $c\bar{c}$ and $b\bar{b}$. We get:

- $\epsilon_{DPC} = 17.9\%$
- For 7*TeV*% we had:17.7%
- This part looks reasonable. We would expected a small gain.

Update on analysis MC studies 8 / 25

Cross check procedure

We then simulate two samples for each of 5 sources of τ .

- 1st Sample with Geometry+Daughter Cuts. $\epsilon_{DPC+DAU}$
- 2nd Sample with Daughter Cut. ϵ_{DAU}

Update on analysis MC studies 8 / 25

M.Chrząszcz, N.Serra 2013

¹Daugher cuts forces τ to come from a specific mother. Ex. B.

au source	$\epsilon_{DPC+DAU}[\%]$	$\epsilon_{DAU}[\%]$	$\epsilon_{DPC}[\%]$
D o au	12.12 ± 0.07	32.71 ± 0.13	18.5 ± 0.1
B o D o au	$\textbf{1.36} \pm \textbf{0.01}$	3.99 ± 0.03	17.0 ± 0.1
$D_{\mathcal{S}} ightarrow au$	11.79 ± 0.07	31.53 ± 0.13	18.6 ± 0.1
$B o D_{s} o au$	1.75 ± 0.01	$\textbf{5.04} \pm \textbf{0.03}$	17.4 ± 0.1
B o au	$\textbf{5.16} \pm \textbf{0.05}$	14.85 ± 0.13	17.4 ± 0.2

Let's take wrong weights from MC and calculate the ϵ_{DPC} : $\epsilon_{DPC,WRONG}=$ 17.86 , with agriment with simulating the wrong mixture from beginning!

au source	$\epsilon_{DPC+DAU} [\%]$	$\epsilon_{DAU}[\%]$	$\epsilon_{DPC}[\%]$
D o au	12.12 ± 0.07	32.71 ± 0.13	18.5 ± 0.1
B o D o au	$\textbf{1.36} \pm \textbf{0.01}$	$\textbf{3.99} \pm \textbf{0.03}$	17.0 ± 0.1
$D_{\mathcal{S}} ightarrow au$	11.79 ± 0.07	31.53 ± 0.13	18.6 ± 0.1
$B o D_{s} o au$	1.75 ± 0.01	$\textbf{5.04} \pm \textbf{0.03}$	17.4 ± 0.1
B o au	$\textbf{5.16} \pm \textbf{0.05}$	14.85 ± 0.13	17.4 ± 0.2

Let's take wrong weights from MC and calculate the ϵ_{DPC} :

 $\epsilon_{DPC,WBONG} = 17.86\%$, with agriment with simulating the wrong mixture from beginning!

If we take the correct weights we obtain:

 $\epsilon_{DPC,COBBECT} = 18.60\%$. We underestimated our efficiency!

M.Chrzaszcz, N.Serra 2013 Update on analysis

au source	$\epsilon_{DPC+DAU}[\%]$	$\epsilon_{DAU}[\%]$	ϵ_{DPC} [%]
D o au	12.12 ± 0.07	32.71 ± 0.13	18.5 ± 0.1
B o D o au	$\textbf{1.36} \pm \textbf{0.01}$	$\textbf{3.99} \pm \textbf{0.03}$	17.0 ± 0.1
$D_{\mathcal{S}} ightarrow au$	11.79 ± 0.07	31.53 ± 0.13	18.6 ± 0.1
$B o D_{s} o au$	1.75 ± 0.01	$\textbf{5.04} \pm \textbf{0.03}$	17.4 ± 0.1
B o au	$\textbf{5.16} \pm \textbf{0.05}$	14.85 ± 0.13	17.4 ± 0.2

How ever the overall effect will be smaller cuz the same thing will happen for the normalization channel.

Update on analysis MC studies

Control channel

I observed similar effect for the normalization channel $D_s \to \phi(\mu\mu)\pi$:

	$\epsilon_{DPC}[\%]$
$B o D_s o \phi \pi$	16.91%
$cc o D_s o \phi \pi$	18.52%

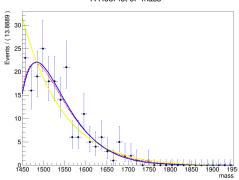
Update on analysis MC studies 10 / 25

Pythia Wars

I have found an other disturbing thing. Lets compare pythia 6 with pythia8:

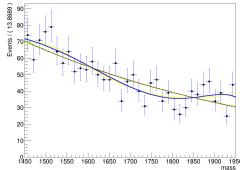
	$\epsilon_{DPC}[\%]$
Pythia 6	17.9
Pythia 8	19.1

This looks worse than it is. Jon checked and this happens not only to $\tau \to 3\mu$. Turn out this is common. $B_s \to \mu\mu$ aslo has the same problem. However thanks to normalization this the ratio of efficiencies changes by 0.1%.


We are safe anyway.

Update on analysis MC studies

- Till yesterday we took η for fitting directly from MC.
- But how much eta is there?
- We might have combinatorial background with partially reconstructed η .
- Lots of thanks to Paul for speedy implementation of this idea!
- To increase the sensitivity I took left mass range larger! Make the fit more stable.

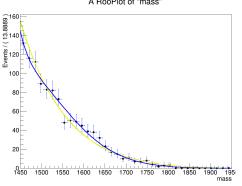

Extreme case: Trash bins Only η

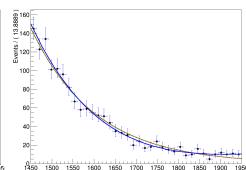
A RooPlot of "mass"

η with combinatorics.

A RooPlot of "mass"

Update on analysis η fits 12 / 25

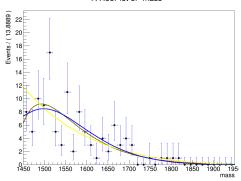

Not only the trash bin is affected: pid 0.725 - 0.86

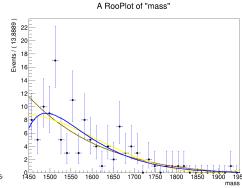

geo: -0.48 - 0.05

Only η

A RooPlot of "mass"

 η with combinatorics. A RooPlot of "mass"


Update on analysis


As old Chinese wisdom says: "One event can make a difference" Not only the trash bin is affected: pid 0.6-0.65

geo: 0.65-0.74Only η

A RooPlot of "mass"

 η with combinatorics.

M.Chrząszcz, N.Serra 2013

Conclusions on η

- 23% of events in the ntuple are background.
- Much better shape of η .
- PDF similar in each bin!
- Much smaller linkage of η to mass window!
- PDFs are ready for fitting with 2012 data!

Update on analysis η fits 13 / 25

Introduction

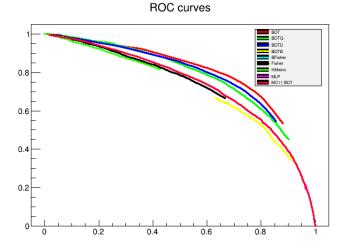
Kaggle (leading machine learning competition platform).

If you notice how people win this competition; you'll notice that sometimes people combine two or more algorithm into ensemble and get better results.

This is called blending.

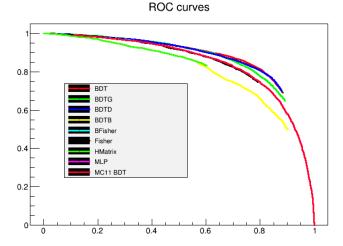
Isn't $\tau \to 3\mu$ perfect environment to play?

Update on analysis TMVA 14 / 25

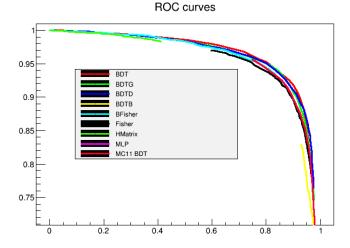

First attempts

- · Let's take our background produced so far.
- Already a comparable sample to 2011! Generator cuts are doing their job.
- Let's train each signal on separate source of τ .

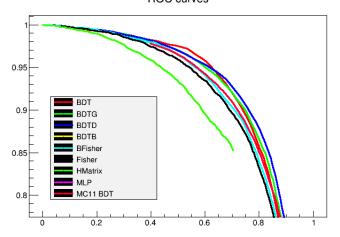
Update on analysis TMVA


$B \rightarrow \tau$

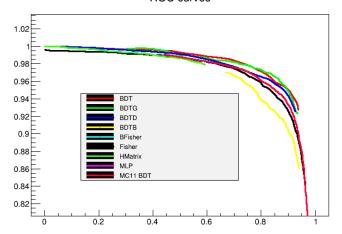
We really suck in selecting this channel.


$B o D_s o au$

On the biggest contributing channel we are quite optimal.

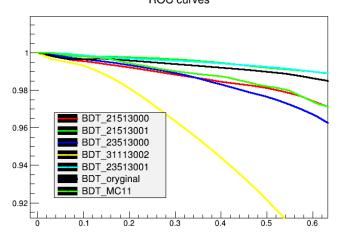

$D_s ightarrow au$

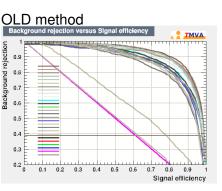
On the biggest contributing channel we are quite optimal.

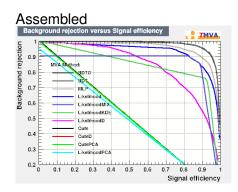

$B o D^+ o au$

On the biggest contributing channel we are quite optimal. ROC curves

$D^+ o au$


On the biggest contributing channel we are quite optimal. ROC curves


Comparison on mix sample


On the biggest contributing channel we are quite optimal.

ROC curves

Blending, very very preliminary

Update on analysis TMVA 22 /

Conclusions on TMVA

- Each of the signal components is enormously larger than MVA trained on mix.
- Method looks very promising if we can find a nice blending method(work for next week).
- Mayby discusion on TMVA/MatrixNet/Neurobayes is next to leading order effect compared to this method?
- How to evaluator which MVA is better?

To do

- Finish producing cc bck
- Continue blending.
- Finish calculating new 2D binning optimisation(last night it was still calculating).
- Start Normalizing the η
- Produce Normalization channel MC.
- Play with MatrixNet.

Things done

- Implemented FastJet for into our BEC.
- Have all Λ_c ntuples and zoontuples.
- Λ_b : looking into normalization channel.