Submitting results to HepData

LHCb

With M.Bettler, A.Puig, A. Grecu

Zurich meeting, CERN November 24, 2016

HepData portal

		Othbout 🕀 Submission Help → Sign in
	HEPData	
This new site	is still under development. Please continue Submitting Data using the old site at http://hepda	Aa.codur.ac.uk.
	Search on B336 publications and 66717 data tables. Q Deach or pages, tables exploring from the sector of the sector	
	Data from the LHC	
\odot	0	<u>×</u>
ATLAS Vew Data	ALICE CMS Vendas	LHCb
	Recently Updated Submissions - View all	
Jet-like correlations with neutral pion triggers in pp and central Pb-Pb collisions at 2.76 TeV Adsm, Jacodav et al	Distributions of Topological Observables in Inclusive Three- and Four-Jet Events in pp Collisions at sprt(d = 7 TeV Khachatryan, Vardan et al	Measurement of the $\eta_{c}(1S)$ production cross-section in proton-proton collisions via the decay $\eta_{c}(1S) \to p\bar{p}$. As $j,$ four ct al
This website	uses cookies to ensure you get the best experience on our website More info	Got H1

Why do we need HepData?

📥 Download A

Table 2 10.17182/basista.74247x1/12

cmenergies

\$ 7000.0-8000.0

Filter 83 data tables

Table 1

Data from Appendix A: Table 3 10.1718/hepdata.74047v1/t1 CP-averaged angular observables evaluated by the unbinned maximum likelihood fit.

Table 2

Data from Appendix A, Table 4 10.17382/hepdata.74347x5/12 CP-sveraged angular observables evakasted by the unbinned maximum likelyhood fit. The first uncertainties are statistical and the second systematic.

Table 3

Data from Appendix A, Table 5

CP-asymmetric angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic

Optimised angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and

Table 5

Data from Appendix A, Table 7 10.17 382/hepdata.742472/s1r5 CP-woraged angular observables evaluated using the method o moments. The first uncertainties are statistical and the second systematic.

Table 6

Data from Appendix A, Table 8

10.17.16.20 reposes / 4247.91295

uncertainties are statistical and the second systematic.

Table 7

Data from Appendix A, Table 9

10.17 162 reports 742479 pro-

The first uncertainties are statistical and the second systems

CP-averaged angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.

observables

POL

RE	P P> B0 < K*(892) < K+ PI- > MU+ MU- > X											
SQRT(S)	7000.0 GeV	7000.0 GeV										
SQRT(S)	8000.0 GeV											
g ² [GEV**2]	F_L	S_3	S_4	S_3	AFB	S_7	S_8	S_9				
0.10 - 0.98	0.263	-0.036 a0.063 eset a0.005 eye	0.082 *288 #38 #0.009 ops	0.17 코란 est #3.02 ept	-0.003 289 mm +2.009 mp	0.015 ali 059 eset ali 006 eye	0.079	-0.083				
1.10 - 2.50	0.66 2間 mit #3.02 mit	-0.077 2007 met at:005 met	-0.077 212 #2# #0.005 (%	0.137 202 me #0.009 cys	-0.191 2000 mm #2.012 mm	-0.219 2002 mm at 004 mm	-0.098 3139 stat a0.005 sys	-0.119 200 stat 20005 opt				
2.50 - 4.00	0.876 239 me 10007 m	0.035 2000 Het al:007 Hys	-0.234 222 +st 20.006 sp	-0.022 232 ==	-0.118 2000 mm 20007 mm	0.068 212 Het all:005 Hys	0.03 23 met 1691 me	-0.092 강양 ##				
4.00 - 6.00	0.611 222 *** 20.017 ***	0.035 2522 stat 28.007 sys	-0.219 2227 +++ 10.000 ++1	-0.146 287 *** 20.011 ***	0.025 283 mm 28.004 mm	-0.016 2555 stat 25.004 sys	0.167 2025 stat 20004 sys	-0.032 10871 He 20804 199				
6.00 - 8.00	0.579 +0.046 vial =0.015 m	-0.042 2888 stat 26013 m	-0.296 229 *** 50.011 ***	-0.249 222 *** 19.012 ***	0.152 2009 mm	-0.047 2825 stat 28.003 m	-0.085 2887 stat 10.006 pp	-0.024 2027 444 20305 199				
11.00 - 12.50	0.493 227 stat 193033 m	-0.189 2022 stat 10.003 m	-0.283 235 *** 10.009 **	-0.327 257 === +0.009 ==	0.318 2000 etc. 10009 m	-0.141 2577 stat 10.009 m	-0.007 3377 stat ±0.003 mp	-0.004 207 dat 10.006 sp				
15.00 - 17.00	0.349 #3.039 #34 #3.009 #35	-0.142 2007 dat +0.007 m	-0.321 2222	-0.316 227 === +0.009 ===	0.411 2897 esc +3.008 yr	0.061 +0.058 etat +0.005 mp	0.003 +0.061 stat +0.003 sys	-0.019 2001 dat +0.004 sps				
17.00 · 19.00	0.354	-0.188	-0.266	-0.323	0.305	0.044	0.013	-0.094				

Sum errors
^{III} Log Scale (X)^{III}

Deselect variables or hide different error bars by clicking on them

Variables FL Summed error Ss Summed error Ss Summed error Asta

Summed error

Marcin Chrząszcz (Universität Zürich)

The challenge

 \Rightarrow The $B \to K^* \mu \mu$ analysis has produced over 80 tables with results and correlation tables...

 \Rightarrow Theorists need all the correlation tables to make the global fit.

 \Rightarrow Reading the numbers form our tex files from all the theories groups

is not really a nice way to do it:

www.phdcomics.com

 \Rightarrow Many thanks for Alex Grecu for help understanding how the HepData works!

Automatic scripts \Rightarrow Coding the 80 tables by hand without making a typo is impossible!

									*dataset:
									*location: Appendix C
									*dscomment: Likelihood correlation matrix \$0.1 < q^2 < 0.98~{\rm GeV}^2/c^4\$.
									*gual: \$g^2\$ = M**2(<mu+ mu-="">) IN GEV**2: 0.1 TO 0.98</mu+>
									*reackey: P P> B0 + X
	$F_{\rm L}$	S_3	S_4	S_5	A_{FB}	S_7	S_8	S_9	*obskey: CORR
$F_{\rm L}$	1.00	0.06	0.00	0.03	0.04	-0.02	0.07	0.08	*qual: RE : P P> B0 < K*(892) < K+ PI- > MU+ MU- > X
S_3			0.01	0.10	-0.00		-0.01	-0.03	*qual: SQRT(S) IN GEV : 7000.0
		1.00							*qual: SQRT(S) IN GEV : 8000.0
S_4			1.00	0.08	0.11	-0.00	0.07	0.02	*yheader: \$F_{\rm L}\$: \$S_3\$: \$S_4\$: \$S_5\$: \$A_{\rm FB}\$: \$S_7\$: \$S_8\$: \$S_9\$
S_5				1.00	0.05	-0.01	0.00	0.04	*xheader: CORR
$A_{\rm FB}$					1.00	0.03	-0.07	0.02	*data: x : y : y : y : y : y : y : y : y
S_7						1.00	0.01	0.11	<pre>\$F_{\rm L}\$; 1.00; 0.06; 0.00; 0.03; 0.04; -0.02; 0.07; 0.08;</pre>
S_8							1.00	0.02	\$5_3\$; 0.06; 1.00; 0.01; 0.10; 0.00; -0.07; -0.01; -0.03;
							1.00		\$5_4\$; 0.00; 0.01; 1.00; 0.08; 0.11; 0.00; 0.07; 0.02;
S_9								1.00	\$5_5\$; 0.03; 0.10; 0.08; 1.00; 0.05; -0.01; 0.00; 0.04;
									\$A {\rm FB}\$; 0.04; 0.00; 0.11; 0.05; 1.00; 0.03; -0.07; 0.02;
									\$5 7\$; -0.02; -0.07; 0.00; -0.01; 0.03; 1.00; 0.01; 0.11;
									\$5 8\$; 0.07; -0.01; 0.07; 0.00; -0.07; 0.01; 1.00; 0.02;
									SS 9S: 0.08: -0.03: 0.02: 0.04: 0.02: 0.11: 0.02: 1.00:
									*dataend:

 \Rightarrow To make sure this is done correctly python scripts were written.

 \Rightarrow The can with some minor modifications can be re-used for other applications.

- \Rightarrow HepData is an extremely useful portal.
- \Rightarrow Let's make our results "One click away" for theorists!

Marcin Chrząszcz (Universität Zürich)

Submitting results to HepData

 \Rightarrow Feel free to use, share and improve the scripts:

https://gitlab.cern.ch/LHCb-RD/tools-hepdata
https://git.physik.uzh.ch/gitbucket/mchrzasz/HepData
http://www.physik.uzh.ch/~mchrzasz/HepData/

Backup

Example:

⇒ The scripts I show here are not 100 % plug and play.
⇒ Each table in latex is a bit different and needs some special modification.
⇒ But to modify the scripts and apply them to your case should not

be much work.

Example:

Table 4: *CP*-averaged angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.

	$0.10 < q^2 < 0.98 \text{ GeV}^2/c^4$	$1.1 < q^2 < 2.5 \text{GeV}^2/c^4$	$2.5 < q^2 < 4.0 \text{GeV}^2/c^4$
-			
$F_{\rm L}$	$0.263^{+0.045}_{-0.044} \pm 0.017$	$0.660^{+0.083}_{-0.077} \pm 0.022$	$0.876^{+0.109}_{-0.097} \pm 0.017$
S_3	$-0.036^{+0.063}_{-0.063} \pm 0.005$	$-0.077^{+0.087}_{-0.105} \pm 0.005$	$0.035^{+0.098}_{-0.089} \pm 0.007$
S_4	$0.082^{+0.068}_{-0.069} \pm 0.009$	$-0.077^{+0.111}_{-0.113} \pm 0.005$	$-0.234^{+0.127}_{-0.144} \pm 0.006$
S_5	$0.170^{+0.059}_{-0.058} \pm 0.018$	$0.137^{+0.099}_{-0.094} \pm 0.009$	$-0.022^{+0.110}_{-0.103} \pm 0.008$
$A_{\rm FB}$	$-0.003^{+0.058}_{-0.057} \pm 0.009$	$-0.191^{+0.068}_{-0.080} \pm 0.012$	$-0.118^{+0.082}_{-0.090} \pm 0.007$
S_7	$0.015^{+0.059}_{-0.059} \pm 0.006$	$-0.219^{+0.094}_{-0.104} \pm 0.004$	$0.068^{+0.120}_{-0.112} \pm 0.005$
S_8	$0.079^{+0.076}_{-0.075} \pm 0.007$	$-0.098^{+0.108}_{-0.123} \pm 0.005$	$0.030^{+0.129}_{-0.131} \pm 0.006$
S_9	$-0.083^{+0.058}_{-0.057} \pm 0.004$	$-0.119^{+0.087}_{-0.104} \pm 0.005$	$-0.092^{+0.105}_{-0.125} \pm 0.007$
	$4.0 < q^2 < 6.0 \text{GeV}^2/c^4$	$6.0 < q^2 < 8.0 \mathrm{GeV^2\!/c^4}$	$11.0 < q^2 < 12.5 {\rm GeV^2\!/c^4}$
$F_{\rm L}$	$0.611^{+0.052}_{-0.053} \pm 0.017$	$0.579^{+0.046}_{-0.046} \pm 0.015$	$0.493^{+0.049}_{-0.047} \pm 0.013$
S_3	$0.035^{+0.069}_{-0.068} \pm 0.007$	$-0.042^{+0.058}_{-0.059} \pm 0.011$	$-0.189^{+0.054}_{-0.058} \pm 0.005$
S_4	$-0.219^{+0.086}_{-0.084} \pm 0.008$	$-0.296^{+0.063}_{-0.067} \pm 0.011$	$-0.283^{+0.084}_{-0.095} \pm 0.009$
S_5	$-0.146^{+0.077}_{-0.078} \pm 0.011$	$-0.249^{+0.059}_{-0.060} \pm 0.012$	$-0.327^{+0.076}_{-0.079} \pm 0.009$
$A_{\rm FB}$	$0.025^{+0.051}_{-0.052} \pm 0.004$	$0.152^{+0.041}_{-0.040} \pm 0.008$	$0.318^{+0.044}_{-0.040} \pm 0.009$
S_7	$-0.016^{+0.081}_{-0.080} \pm 0.004$	$-0.047^{+0.068}_{-0.066} \pm 0.003$	$-0.141^{+0.072}_{-0.074} \pm 0.005$
S_8	$0.167^{+0.094}_{-0.091} \pm 0.004$	$-0.085^{+0.072}_{-0.070} \pm 0.006$	$-0.007^{+0.070}_{-0.072} \pm 0.005$
S_9	$-0.032^{+0.071}_{-0.071} \pm 0.004$	$-0.024^{+0.059}_{-0.060} \pm 0.005$	$-0.004^{+0.070}_{-0.073} \pm 0.006$
	$15.0 < q^2 < 17.0 \mathrm{GeV^2\!/c^4}$	$17.0 < q^2 < 19.0 {\rm GeV^2\!/c^4}$	
$F_{\rm L}$	$0.349^{+0.039}_{-0.039} \pm 0.009$	$0.354^{+0.049}_{-0.048} \pm 0.025$	
S_3	$-0.142^{+0.044}_{-0.049} \pm 0.007$	$-0.188^{+0.074}_{-0.084} \pm 0.017$	
S_4	$-0.321^{+0.055}_{-0.074} \pm 0.007$	$-0.266^{+0.063}_{-0.072} \pm 0.010$	
S_5	$-0.316^{+0.051}_{-0.057} \pm 0.009$	$-0.323^{+0.063}_{-0.072} \pm 0.009$	
$A_{\rm FB}$	$0.411^{+0.041}_{-0.037} \pm 0.008$	$0.305^{+0.049}_{-0.048} \pm 0.013$	
S_7	$0.061^{+0.058}_{-0.058} \pm 0.005$	$0.044^{+0.073}_{-0.072} \pm 0.013$	
S_8	$0.003^{+0.061}_{-0.061} \pm 0.003$	$0.013^{+0.071}_{-0.070} \pm 0.005$	
S_9	$-0.019^{+0.054}_{-0.056} \pm 0.004$	$-0.094^{+0.065}_{-0.067} \pm 0.004$	

Submitting results to HepData

8

Example:

RE	P P> 80 < K'(892) < K+ PI -> MU+ MU-> X												
SQRT(S)	7000.0 GeV												
SQRT(S)	800.0 GeV												
q ² IN GEV**2	FL S3 S4 S5 AFB S7 S8 S9												
0.10 -	0.263 +0.045,-0.044 (stat)	-0.036 ± 0.063 (stat)	0.082 +0.068,-0.059 (stat)	0.170 +0.059,-0.058 (stat)	-0.003 +0.058,-0.057 (stat)	0.015 ± 0.059 (stat)	0.079 +0.076,-0.075 (stat)	-0.083 +0.058,-0.057 (stat)					
0.98	± 0.017 (sys)	± 0.005 (sys)	± 0.009 (sys)	± 0.018 (sys)	± 0.009 (sys)	± 0.006 (sys)	± 0.007 (sys)	± 0.004 (sys)					
1.1 - 2.5	0.660 +0.083,-0.077 (stat)	-0.077 +0.087,-0.105 (stat)	-0.077 +0.111,-0.113 (stat)	0.137 +0.099,-0.094 (stat)	-0.191 +0.068,-0.080 (stat)	-0.219 +0.094,-0.104 (stat)	-0.098 +0.108,-0.123 (stat)	-0.119 +0.087,-0.104 (stat)					
	± 0.022 (sys)	± 0.005 (sys)	± 0.005 (sys)	± 0.009 (sys)	± 0.012 (sys)	± 0.004 (sys)	± 0.005 (sys)	± 0.005 (sys)					
2.5 - 4.0	0.876 +0.109,-0.097 (stat)	0.035 +0.098,-0.089 (stat)	-0.234 +0.127,-0.144 (stat)	-0.022 +0.110,-0.103 (stat)	-0.118 +0.082,-0.090 (stat)	0.068 +0.120,-0.112 (stat)	0.030 +0.129,-0.131 (stat)	-0.092 +0.105,-0.125 (stat)					
	± 0.017 (sys)	± 0.007 (sys)	± 0.006 (sys)	± 0.000 (sys)	± 0.007 (sys)	± 0.005 (sys)	± 0.006 (sys)	± 0.007 (sys)					
4.0 - 6.0	0.611 +0.052,-0.053 (stat)	0.035 +0.069,-0.068 (stat)	-0.219 +0.086,-0.084 (stat)	-0.146 +0.077,-0.078 (stat)	0.025 +0.051,-0.052 (stat)	-0.016 +0.081,-0.080 (stat)	0.167 +0.094,-0.091 (stat)	-0.032 ± 0.071 (stat)					
	± 0.017 (sys)	± 0.007 (sys)	± 0.008 (sys)	± 0.011 (sys)	± 0.004 (sys)	± 0.004 (sys)	± 0.004 (sys)	± 0.004 (sys)					
6.0 - 8.0	0.579 ± 0.046 (stat)	-0.042 +0.058,-0.059 (stat)	-0.296 +0.063,-0.067 (stat)	-0.249 +0.059,-0.060 (stat)	0.152 +0.041,-0.040 (stat)	-0.047 +0.068,-0.066 (stat)	-0.085 +0.072,-0.070 (stat)	-0.024 +0.059,-0.060 (stat)					
	± 0.015 (sys)	± 0.011 (sys)	± 0.011 (sys)	± 0.012 (sys)	± 0.008 (sys)	± 0.003 (sys)	± 0.006 (sys)	± 0.005 (sys)					
11.0 -	0.493 +0.049,-0.047 (stat)	-0.189 +0.054,-0.058 (stat)	-0.283 +0.084,-0.095 (stat)	-0.327 +0.076,-0.079 (stat)	0.318 +0.044,-0.040 (stat)	-0.141 +0.072,-0.074 (stat)	-0.007 +0.070,-0.072 (stat)	-0.004 +0.070,-0.073 (stat)					
12.5	± 0.013 (sys)	± 0.005 (sys)	± 0.009 (sys)	± 0.009 (sys)	± 0.009 (sys)	± 0.005 (sys)	± 0.005 (sys)	± 0.006 (sys)					
15.0 -	0.349 ± 0.039 (stat)	-0.142 +0.044,-0.049 (stat)	-0.321 +0.055,-0.074 (stat)	-0.316 +0.051,-0.057 (stat)	0.411 +0.041,-0.037 (stat)	0.061 ± 0.058 (stat)	0.003 ± 0.061 (stat)	-0.019 +0.054,-0.056 (stat)					
17.0	± 0.009 (sys)	± 0.007 (sys)	± 0.007 (sys)	± 0.009 (sys)	± 0.008 (sys)	± 0.005 (sys)	± 0.003 (sys)	± 0.004 (sys)					
17.0 -	0.354 +0.049,-0.048 (stat)	-0.188 +0.074,-0.084 (stat)	-0.266 +0.063,-0.072 (stat)	-0.323 +0.063,-0.072 (stat)	0.305 +0.049,-0.048 (stat)	0.044 +0.073,-0.072 (stat)	0.013 +0.071,-0.070 (stat)	-0.094 +0.065,-0.067 (stat)					
19.0	± 0.025 (sys)	± 0.017 (sys)	± 0.010 (sys)	± 0.009 (sys)	± 0.013 (sys)	± 0.013 (sys)	± 0.005 (sys)	± 0.004 (sys)					
	Plot	Plot	Plat	Plat	Plat	Plot	Plot	Plot					
	SelectPlot	SelectPlot	SelectPlot	SelectPlot	SelectPlot	SelectPlot	SelectPlot	SelectPlot					

Correlation tables

- \Rightarrow The main problem was the correlation tables...
- \Rightarrow We had around 80 of them...

	$F_{ m L}$	S_3	S_4	S_5	$A_{\rm FB}$	S_7	S_8	S_9
$F_{ m L}$	1.00	0.06	0.00	0.03	0.04	-0.02	0.07	0.08
S_3		1.00	0.01	0.10	-0.00	-0.07	-0.01	-0.03
S_4			1.00	0.08	0.11	-0.00	0.07	0.02
S_5				1.00	0.05	-0.01	0.00	0.04
$A_{\rm FB}$					1.00	0.03	-0.07	0.02
S_7						1.00	0.01	0.11
S_8							1.00	0.02
$S_8 \ S_9$								1.00

Correlation tables

 \Rightarrow The main problem was the correlation tables...

 \Rightarrow We had around 80 of them...

q ² = M**2(<mu+ mu-="">)</mu+>	0.1-0.98 GeV^2										
RE	P P>	P P> B0 < K*(892) < K+ PI- > MU+ MU- > X									
SQRT(S)	7000.0	7000.0 GeV									
SQRT(S)	8000.0	GeV									
CORR	$F_{ m L}$	S_3	S_4	S_5	$A_{ m FB}$	S_7	S_8	S_9			
$F_{ m L}$	1.00	0.06	0.00	0.03	0.04	-0.02	0.07	0.08			
S_3	0.06	1.00	0.01	0.10	0.00	-0.07	-0.01	-0.03			
S_4	0.00	0.01	1.00	0.08	0.11	0.00	0.07	0.02			
S_5	0.03	0.10	80.0	1.00	0.05	-0.01	0.00	0.04			
$A_{ m FB}$	0.04	0.00	0.11	0.05	1.00	0.03	-0.07	0.02			
S_7	-0.02	-0.07	0.00	-0.01	0.03	1.00	0.01	0.11			
S_8	0.07	-0.01	0.07	0.00	-0.07	0.01	1.00	0.02			
S_9	0.08	-0.03	0.02	0.04	0.02	0.11	0.02	1.00			

Marcin Chrząszcz (Universität Zürich)

HepData format

\Rightarrow So HepData format is completely different then tex.

```
*dataset:
*location: Appendix C
*dscomment: Likelihood correlation matrix $0.1 < q^2 < 0.98~{\rm GeV}^2/c^4$.
*qual: $q^2$ = M**2(<MU+ MU->) IN GEV**2: 0.1 TO 0.98
*reackev: P P --> B0 + X
*obskev: CORR
*qual: RE : P P --> B0 < K*(892) < K+ PI- > MU+ MU- > X
*qual: SQRT(S) IN GEV : 7000.0
*qual: SORT(S) IN GEV : 8000.0
*yheader: $F {\rm L}$ : $S 3$ : $S 4$ : $S 5$ : $A {\rm FB}$ : $S 7$ : $S 8$ : $S 9$
*xheader: CORR
*data: x : y : y : y : y : y : y : y : y
SF {\rm L}S: 1.00: 0.06: 0.00: 0.03: 0.04: -0.02: 0.07: 0.08:
$$ 3$: 0.06: 1.00: 0.01: 0.10: 0.00: -0.07: -0.01: -0.03:
SS 4S: 0.00: 0.01: 1.00: 0.08: 0.11: 0.00: 0.07: 0.02:
$S_5$; 0.03; 0.10; 0.08; 1.00; 0.05; -0.01; 0.00; 0.04;
$A_{\rm FB}$; 0.04; 0.00; 0.11; 0.05; 1.00; 0.03; -0.07; 0.02;
$5_7$; -0.02; -0.07; 0.00; -0.01; 0.03; 1.00; 0.01; 0.11;
$5 8$; 0.07; -0.01; 0.07; 0.00; -0.07; 0.01; 1.00; 0.02;
SS 9S: 0.08: -0.03; 0.02; 0.04; 0.02; 0.11; 0.02; 1.00;
*dataend:
```

My scripts ⇒ Written in python.

 \Rightarrow Will briefly go through the some of it's functions.

```
class Table:
   def __init__(self, header, columns, matrix):
        self.header = header
        self.columns = columns
        self.matrix = matrix
        self.matrix fix = []
        self.table = ''
   def get(self, row, column):
        if row > column:
           return self.get(column. row)
        return self.matrix[row][column - row]
   def get row(self, row):
        return self.matrix[row]
   def __str__(self):
        return self. unicode ()
   def fixmatrix(self):
        print self.matrix
        self.matrix fix = self.matrix
        for i in range(0, len(self.matrix)):
           print self.matrix[i]
           for j in range(0, len(self.matrix[i])):
                if (self.matrix[i][j] == ' ' or self.matrix[i][j] == ' ' or self.matrix[i][j] == ' ' or self.matrix[i][j] == '
                    self.matrix_fix[i][j] = get_ride_of_latex(self.matrix[j - 1][i + 1])
                   #print(i.i. self.matrix[i-1][i+1])
                else:
                   #print(i,j, get ride of latex(self.matrix[i][j]))
                   self.matrix fix[i][j] = get ride of latex(self.matrix[i][j])
```

 \Rightarrow Written in python.

 \Rightarrow Will briefly go through the some of it's functions.

```
def get string(self):
    s = '*data: x : '
    for i in range(1, len(self.matrix_fix[0]) - 1):
        s += "v :"
    s += " v "
    self.table += s + '\n'
    for i in range(0, len(self.matrix_fix)):
        S = 1
        s += self.columns[i + 1] + " : "
        for j in range(1, len(self.matrix_fix[i])):
            #print('a',self.matrix_fix[j-1][i+1])
            s += get_ride_of_latex(self.matrix_fix[j - 1][i + 1]) + ' : '
        self.table += s + '\n'
        # self.table+= \
    print("TEST: ", self.matrix_fix)
def __unicode__(self):
    dupa=":".join(self.columns)
    dupa=dupa.replace(': ', '', 1)
    #print(dupa)
```

- \Rightarrow Written in python.
- \Rightarrow Will briefly go through the some of it's functions.

```
print("TEST: ", self.matrix_fix)
    def unicode (self):
        dupa=":".ioin(self.columns)
        dupa=dupa.replace(': ', '', 1)
        #print(dupa)
        return """*dataset:
*location: Appendix G
*dscomment: %s
*vheader: %s
*data CHANGEME
*dataend:
 "" % (self.header, dupa, self.table)
class TableBuilder:
    def init (self):
        self.header = None
        self.columns = None
        self.matrix = []
        self.matrix fix = []
    def add row(self, row):
        self.matrix.append(row)
    def build(self):
        return Table(self.header, self.columns, self.matrix)
    def parse table header(self line).
```

Marcin Chrząszcz (Universität Zürich)

Submitting results to HepData

- \Rightarrow Written in python.
- \Rightarrow Will briefly go through the some of it's functions.

```
def is_hline(self, line):
    return line.startswith(r'\hline')
def is_table_header(self, line):
    return line.startswith(r'\subsection')
def is_table_begin(self, line):
    return line.startswith(r'\begin{tabular}')
def is_table_end(self, line):
    return line.startswith(r'\end{tabular}')
def build(self):
    self.state = ParserStateEnum.DONE
    self.table = self.builder.build()
```

 \Rightarrow Written in python.

 \Rightarrow Will briefly go through the some of it's functions.

*dataset: *location: App *dscomment: No *yheader: \$/	one	{4}\$: \$A_{5}	\$: \$A_{6s}\$: \$A_{7}\$: \$A_{8}\$:	\$A_{9}\$	
*data CHANGEM							
*data: x : y		:y : y					
\$A {3}\$:	1.00 :	-0.12 :	-0.18 :	0.00 :	0.01 :	0.01 :	-0.05 :
\$A {4}\$:	-0.12 :	1.00 :	0.26 :	-0.14 :	0.02 :	-0.08 :	0.03 :
\$A {5}\$:	-0.18 :	0.26 :	1.00 :	-0.13 :	-0.09 :	0.02 :	0.07 :
\$A {6s}\$:	0.00 :	-0.14 :	-0.13 :	1.00 :	0.0 :	0.01 :	-0.01 :
\$A_{7}\$:	0.01 :	0.02 :	-0.09 :	0.0 :	1.00 :	0.14 :	-0.15 :
\$A {8}\$:	0.01 :	-0.08 :	0.02 :	0.01 :	0.14 :	1.00 :	-0.07 :
\$A_{9}\$:	-0.05 :	0.03 : 0			9.15 : -	9.07 : 1.0	
*dataond.							

User case

 \Rightarrow There will be things that need to be changed for each table:

```
def get_ride_of_latex(line):
    line2 = line
    line2 = line2.replace(r"\\rm", r"\rm")
    line2 = line2.replace(r"\\", "")
    line2 = line2.replace(r'\", '')
    line2 = line2.replace(r'\ ', '')
    line2 = line2.replace(r'\'gevgevcccc', 'GeV/c^4')
    return line2
```

Error encoding

\Rightarrow If you need to encode errors in HepData format:

*yheader: \$F_{\rm L}\$: \$S_{3}\$: \$S_{4}\$: \$S_{5}\$: \$A_{\rm FB}\$: \$S_{7}\$: \$S {8}\$: \$S {9}\$ *data: x : y : y : y : y : y : y : y : y 0.263 +0.045, -0.044(DSYS=0.017) ; -0.036 +0.063,-0.063(DSYS=0.005) ; 9.10 TO 0.98 : +0.058,-0.057(DSYS=0.009) ; 0.015 +0.059,-0.059(DSYS=0.006) ; 0.079 +0.076, -0.075(DSYS 1.1 TO 2.5: 0.660 +0.083,-0.077(DSYS=0.022); -0.077 +0.087,-0.105(DSYS=0.005); +0.068,-0.080(DSYS=0.012) ; -0.219 +0.094, -0.104(DSYS=0.004) ; -0.098 +0.108,-0.123(DSY 0.876 +0.109,-0.097(DSYS=0.017) ; 0.035 +0.098, -0.089(DSYS=0.007) : 2.5 TO 4.0 : +0.082,-0.090(DSYS=0.007) ; 0.068 +0.120,-0.112(DSYS=0.005) ; 0.030 +0.129,-0.131(DSYS= 4.0 TO 6.0 ; 0.611 +0.052,-0.053(DSYS=0.017) ; 0.035 +0.069, -0.068(DSYS=0.007); +0.051,-0.052(DSYS=0.004) ; -0.016 +0.081,-0.080(DSYS=0.004) ; 0.167 +0.094,-0.091(DSYS 0.579 +0.046.-0.046(DSYS=0.015) : -0.042 +0.058.-0.059(DSYS=0.011) : 5 0 TO 8 0 ·

Submitting procedure

 \Rightarrow Albert and Marco have put in a procedure for submitting your results to HepData:

- You contact Alex Grecu that he prepares you a temporary slot on HepData. You will get from him number and password that you can use for logging.
- He will also prepare a JIRA task for this data submission.
- You code in your result (please remember to always have your own copy as data can be lost in HepData portal).
- Once you finish coding, your results will be reviewed/sign off by the analysis e-group.
- RD convenors are also in the loop.
- After you collected enough pokemons (:P) Alex submits this to HepData.

Summary

 \Rightarrow HepData is a tricky format that unfortunately is not similar to other ones :(

 \Rightarrow I am afraid that everyone has to adjust those scripts for they tables.

 \Rightarrow If you want to put the results to HepData do it with the paper submission!

 \Rightarrow If you already produced some results and want to copy them from tex files to Hepdata you can start with my scripts:

http://www.physik.uzh.ch/~mchrzasz/HepData/KstarMuMu/ ⇒ Or on git:

https://git.physik.uzh.ch/gitbucket/mchrzasz/HepData

Backup

Submitting results to HepData

¹⁶/6