Form factors for

$$oldsymbol{\Lambda}_b
ightarrow oldsymbol{\Lambda}_c^* \ell
u$$

Marcin Chrząszcz Nicola Serra Elena Graverini

 $R(\Lambda_c^*)$ meeting, CERN February 5, 2016

Introduction

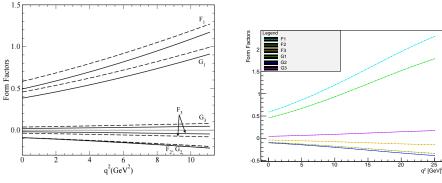
The matrix elements for our Λ_b decays are depended on $F_{1,\dots,4}$ and $G_{1,\dots,4}$ form factors:

$$\begin{split} &\langle \Lambda_c^{1/2^-}(p',s') | V_\mu | \Lambda_b(p,s) \rangle = \overline{u}(p',s') \left(F_1(q^2) \gamma_\mu + F_2(q^2) \frac{p_\mu}{m_{\Lambda_Q}} + F_3(q^2) \frac{p'_\mu}{m_{\Lambda_Q}} \right) u(p,s), \\ &\langle \Lambda_c^{1/2^-}(p',s') | A_\mu | \Lambda_b(p,s) \rangle = \overline{u}(p',s') \left(G_1(q^2) \gamma_\mu + G_2(q^2) \frac{p_\mu}{m_{\Lambda_Q}} + G_3(q^2) \frac{p'_\mu}{m_{\Lambda_Q}} \right) \gamma_5 u(p,s), \\ &\langle \Lambda_c^{3/2^-}(p',s') | V_\mu | \Lambda_b(p,s) \rangle = \overline{u}^\alpha(p',s') \left[\frac{p_\alpha}{m_{\Lambda_Q}} \left(F_1 \gamma_\mu + F_2 \frac{p_\mu}{m_{\Lambda_Q}} + F_3 \frac{p'_\mu}{m_{\Lambda_Q}^{3/2}} \right) + F_4 g_{\alpha\mu} \right] u(p,s), \\ &\langle \Lambda_c^{3/2^-}(p',s') | A_\mu | \Lambda_b(p,s) \rangle = \overline{u}^\alpha(p',s') \left[\frac{p_\alpha}{m_{\Lambda_Q}} \left(G_1 \gamma_\mu + G_2 \frac{p_\mu}{m_{\Lambda_Q}} + G_3 \frac{p'_\mu}{m_{\Lambda_Q}^{3/2}} \right) + G_4 g_{\alpha\mu} \right] \gamma_5 u(p,s), \end{split}$$

What is in the simulation?

- \Rightarrow The simulation that we have uses the form factors calculated in arXiv:nucl-th/0503030
- \Rightarrow In this paper the form factors are calculated in constituent quark model.
- \Rightarrow Let me quote a theorists that wants to remain anonymous: "it's not even wrong".
- \Rightarrow Never the less this is what Syracuse is using and is now in the simulation \rightarrow we will reweigh our MC.
- \Rightarrow To do so, we firstly looked at reproducing the calculations from EvtGen.

Form factor calculus


⇒ So in EvtGen the calculations of From Factors are done only in the harmonic oscillator basis.

model	m_{σ} (GeV)	$m_{\scriptscriptstyle S}$ (GeV)	m_c (GeV)	m_b (GeV)	b (GeV 2)	α_{Coul}	α_{hyp}	C_{qqq} (GeV)
HONR	0.40	0.65	1.89	5.28	0.14	0.45	0.81	-1.20
HOSR	0.38	0.59	1.83	5.17	0.17	0.09	0.26	-1.45
STNR	0.40	0.64	1.87	5.28	0.13	0.35	0.31	-1.22
STSR	0.34	0.57	1.78	5.22	0.15	0.19	0.11	-1.23

 \Rightarrow On top of this you also have the wave size:

J^P	model	Λ_b	Λ_c	Λ .	N					
		$(\alpha_{\lambda}, \alpha_{\rho})$	$(\alpha_{\lambda}, \alpha_{\rho})$	$(\alpha_{\lambda}, \alpha_{\rho})$	$(\alpha_{\lambda}, \alpha_{\rho})$					
$1/2^{+}$	HONR	(0.59, 0.61)	(0.55, 0.58)	(0.49, 0.53)	0.48					
$1/2^{+}$	HOSR	(0.68, 0.68)	(0.60, 0.61)	(0.52, 0.57)	0.54					
$1/2^{+}$	STNR	(0.44, 0.66)	(0.41, 0.69)	(0.35, 0.75)	-					
$1/2^{+}$	STSR	(0.46, 0.64)	(0.43, 0.67)	(0.38, 0.72)	-					
1/2-	HONR	-	(0.47, 0.49)	(0.40, 0.47)	0.37					
$1/2^{-}$	HOSR	-	(0.55, 0.59)	(0.48, 0.54)	0.46					
$1/2^{-}$	STNR	-	(0.60, 0.50)	(0.55, 0.54)	- \/					
$1/2^{-}$	STSR	-	(0.61, 0.49)	(0.58, 0.51)	- 1					
3/2+	HONR	-	-	-	0.35					
3/2+	HOSR	-	-	-	0.44					
5/2+	HONR	-	-	-	0.35					
5/2+	HOSR	-	-	- '	0.46					

Form factor results (example $\Lambda_c^{1/2+}$)

- \Rightarrow So I check each of the three Form factors with calculations from EvtGen and they are in perfect agreement.
- \Rrightarrow Wrote all the bispinor algebra routines, gamma matrices, etc.
- \Rightarrow Didn't finish writing the matrix element calculus, once this is done we have a reweighing routine with all the form factors inside that is plug and play!

Summary

- ullet Form factors implemented with all the algebraic structure of V-A currents.
- Working on matrix element computations.
- Reweighing should follow.
- Once that is ready we will test with of the discriminating variables are less form factor independent so they can be used in the selection.

Backup

