Search for the suppressed $\Lambda_c^+ o p\mu^+\mu^-$ decay and observation of the $\Lambda_c^+ o p\omega$ decay Marcin Chrzaszcz mchrzasz@cern.ch With M. Jezabek, T. Lesiak, B. Nowak, M. Witek (IFJ PAN) Tuesday meeting, CERN September 26, 2017 ### Yellow pages - ⇒ Reviewers: Tom Blake(chair), Harry Cliff, Simon Eydelman(EB) - ⇒ Twiki: https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/Lc2PMuMu - ⇒ Review start: 01.04.2017 - ⇒ Three interactions with the review committee. - ⇒ Unbinding: 18.07.2017 - ⇒ Minor changes to the analysis during the review. We would like to take this occasion and than Tom, Harry and Simon for fruitful, constructive and smooth review! #### Motivation - \Rightarrow SM predictions: $\mathcal{O}(10^{-8})$ - \Rightarrow Long distance effects: $\mathcal{O}(10^{-6})$ - \Rightarrow Previous measurement done by Babar: $\operatorname{Br}(\Lambda_c^+ \to p \mu^+ \mu^-) < 4.4 \cdot 10^{-5}$ at 90% CL Should be able to improve by a factor of 100! ## **Analysis strategy** - \Rightarrow Normalization to $\Lambda_c^+ \to p\phi(\mu\mu)$. - ⇒ Typical steps rare decays: - Loose stripping selection. - BDT1 used for first preselection. - BDT2 used to further suppress the background. - PID used to fight the peaking background. - ⇒ Search performed in several dimuon mass windows. - \Rightarrow Selection optimized on CL_s . - \Rightarrow Unblinding and calculate the UL of BR using CL_s . ## Analysis strategy - \Rightarrow Normalization to $\Lambda_c^+ \to p\phi(\mu\mu)$. - ⇒ Typical steps rare decays: - Loose stripping selection. - BDT1 used for first preselection. - BDT2 used to further suppress the background. - PID used to fight the peaking background. - Search performed in several dimuon mass windows. - \Rightarrow Selection optimized on CL_s . - ⇒ Unblinding and calculate the UL of BR using CL_s. #### Normalization channel ## Use the $\Lambda_c^+ \to p\phi(\mu\mu)$. - ⇒ Same final state, same selection, a lot of systematics cancel. - \Rightarrow The Branching fraction of $\Lambda_c^+ \to p\phi$ is know with 22 %. Use the $\Lambda_c^+ \to pK\pi$. - \Rightarrow Precisely known branching fraction (precision: 6.4 %). - ⇒ A lot of additional systematics due to different final states, different selections ## We choose the $\Lambda_c^+ \to p\phi(\mu\mu)$ option - \Rightarrow In the most optimistic scenario where you assume the 22 % systematic to go town to 6.4 % the UL. - \Rightarrow In this case the UL gets worse 7.8 %. #### Normalization channel Use the $\Lambda_c^+ \to p\phi(\mu\mu)$. ⇒ Same final state, same selection, a lot of systematics cancel. \Rightarrow The Branching fraction of $\Lambda_c^+ \to p\phi$ is know with 22 %. Use the $\Lambda_c^+ \to pK\pi$. \Rightarrow Precisely known branching fraction (precision: 6.4 %). ⇒ A lot of additional systematics due to different final states, different selections ## We choose the $\Lambda_c^+ \to p\phi(\mu\mu)$ option - \Rightarrow In the most optimistic scenario where you assume the 22 % systematic to go town to 6.4 % the UL. - \Rightarrow In this case the UL gets worse 7.8 %. ## Data sets and Stripping ⇒ 2011+2012 (aka Run1) Stripping 20. | Condition | $\Lambda_c^+ \to p \mu^+ \mu^-$ | | |-------------------------------|----------------------------------|--| | μ^{\pm} and p | | | | p_T | > 300 MeV/c | | | Track χ^2 /ndf | < 3 | | | IP χ^2 /ndf | > 9 | | | $\operatorname{PID}\mu^{\pm}$ | PIDmu> -5 and (PIDmu - PIDK) > 0 | | | PID p | PIDp>10 | | | Λ_c^+ | | | | Δm | $< 150 MeV/c^2$ | | | Vertex χ^2 | < 15 | | | IP χ^2 | < 225 | | | $c\tau$ | $> 100 \mu \mathrm{m}$ | | | Lifetime fit χ^2 | < 225 | | #### Preselection #### ⇒ Additional cuts: | Common cuts | | |-------------------------------------|--| | $m_{\mu\mu} < 1400 \; MeV/c^2$ | | | proton $ProbNNp > 0.1$ | | | $\mu^+, \mu^- ProbNNmu > 0.1$ | | | $10~GeV/c < p_{proton} < 100~GeV/c$ | | #### ⇒ We define couple of dimuom mass regions: | $m(\mu\mu)$ region | $\left[MeV/c^2 ight]$ | |--------------------|---| | ϕ region | [985, 1055] | | ω region | [759, 805] | | non resonant | $[210,747] \cup [817,980] \cup [1060,1400]$ | ## Trigger - \Rightarrow We require the following triggers (all are TOS): - Lo - LoMuonDecision - HLT1 - o Hlt1TrackMuonDecision - Hlt1DiMuonLowMassDecision - Hlt1TrackAllLoDecision - HLT2 - Hlt2DiMuonDetachedDecision - Hlt2CharmSemilep3bodyD2KMuMuDecision - Hlt2CharmSemilepD2HMuMuDecision - \Rightarrow The TIS increase the signal yield by <10~% and were asked to be removed at the WG review stage. ## BDT1 training ⇒ The normalization channel is also a rather "rare decay": $${\rm Br}(\Lambda_c^+ \to p\phi) \cdot {\rm Br}(\phi \to \mu\mu) = 3.1 \cdot 10^{-7}$$ \$\Rightarrow\$ After the previous preselection a simple BDT is trained using variables that are well simulated in the MC. k-folding used ($k=10$) \Rightarrow The BDT1 (not surprisingly) likes the prompt Λ_c rather the secondary ones. #### BDT1 selection - ⇒ The selection based on BDT1 is not optimised. - ⇒ A loose cut: $$BDT1 > -0.1$$ ⇒ The normalization channel peak is observed. #### BDT₂ selection #### ⇒ Variables used: - flight distance the one between the production and decay points. - χ^2 of flight distance, - transformed decay time $T = \exp(-1000 \cdot \tau/\text{ns})$, - IP impact parameter with respect to primary vertex, - χ^2 of IP of Λ_c^+ - $\log(\chi^2_{DTF})$, - p_T transverse momentum of Λ_c^+ , - minimum of χ^2 of p, μ^+ , μ^- w.r.t. primary vertex, - transverse momenta #### BDT₂ ⇒ After correcting the DATA/MC differences the BDT distribution shows a a good DATA/MC agreement. \Rightarrow No mass correlation observed. #### PID \Rightarrow MC re sampling is choose to correct the PID distributions: For MC samples the ProbNNp and ProbNNmu are drawn from the PIDCalib distributions. - \Rightarrow The PIDCalib doesn't cover to low p_T muons (10%). - \Rightarrow Decided to use for them the $D_s \to \phi(\mu\mu)$ sample. ## Selection optimization - ⇒ The final selection of the analysis is optimized! - \Rightarrow CL_s method used. - ⇒ KDE used to sample toy experiments. | Variable | Condition | |---|-----------| | BDT | > 0.0 | | ProbNNp(p) | > 0.68 | | $\mathbf{minimum}\ ProbNNmu(\mu^{\pm})$ | > 0.38 | ## Peaking backgrounds ⇒ The tight PID cuts essentially kill the peaking bkg! \Rightarrow The only bkg left is the $\Lambda_c^+ \to p\pi\pi$. ⇒ Estimated contamination: $1.96 \pm 1.13 \Rightarrow$ assigned as systematic #### Normalization \Rightarrow The gold equation: $$\frac{\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-)}{\mathcal{B}(\Lambda_c^+ \to p \phi(\mu \mu))} = \frac{\epsilon_{\text{norm}}^{\text{TOT}}}{\epsilon_{\text{sig}}^{\text{TOT}}} \times \frac{N_{\text{sig}}}{N_{\text{norm}}},$$ \Rightarrow We take advantage of the cancellation that: $$\frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}}^{\text{TOT}} = \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}}^{\text{STRIP}} \times \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}}^{\text{COMM}} \times \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}}^{\text{SPEC}}, \quad \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}}^{\text{i}} \simeq 1$$ - \Rightarrow In addition we have added 6 mass bins to increase the sensitivity. - ⇒ Signal is modelled by a double Gaussian. ## **Expected background** ⇒ Background modelled with a linear function. | bin | no events | |------|------------------------| | bin1 | 8.56136 ± 0.540302 | | bin2 | 8.60318 ± 0.536917 | | bin3 | 8.64582 ± 0.536561 | | bin4 | 8.6887 ± 0.539208 | | bin5 | 8.7304 ± 0.544752 | | bin6 | 8.77226 ± 0.553162 | \Rightarrow Expected upper limits: $\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-) < 5.91 \times 10^{-8}$ at 90 % CL ## Observed Upper limits ⇒ After the green light from RC we have unblinded we did not observed a significant access of events. ⇒ We have set an UL: $$\mathcal{B}(\Lambda_c^+ \to p\mu^+\mu^-) < 7.68 \times 10^{-8} \text{ at } 90\% \text{ CL}$$ expected ± 2 σ ## By product :) \Rightarrow We also looked at the ω dimuon region. ## We observed an access Using Wilks theorem we have calculated the singificance to be $5.0 \sigma!$ ⇒ This is the first observation of this decay!!! $$\mathcal{B}(\Lambda_c^+ \to p\omega) = (7.6 \pm 2.6 \ (stat) \pm 0.9 \ (syst1) \pm 3.1 \ (syst2)) \times 10^{-4}$$ #### Conclusion • Improved the UL for $\mathcal{B}(\Lambda_c^+ \to p\mu^+\mu^-)$ by two orders of magnitude! #### Conclusion • Improved the UL for $\mathcal{B}(\Lambda_c^+ \to p\mu^+\mu^-)$ by two orders of magnitude! - First time observed the decay $\Lambda_c^+ \to p\omega!!$ - Paper is beeing prepared, aiming PRL - We would like to ask the collaboration for approving this analysis. ## Backup