

$B^0 ightarrow K^* \mu^- \mu^+$ MC Filter

Marcin Chrząszcz mchrzasz@cern.ch Thomas Blake Nicola Serra

University of Zurich^{uzH}

EWP WG meeting, CERN October 9, 2016

A glimpse in the Run1 analysis

 \Rightarrow In the Run1 we have asked for a filtered MC to correct for detector acceptance.

 \Rightarrow Asked for 5.5M events (after stripping in DST), which means we generated around 110M events.

 \Rightarrow After our full selection we ended up with with only 1.4M events.

Warning! The stripping line has a PID cut inside: $PID_{\mu} > -3$. This essentially means we model that efficiency from MC.

Run2 options

- 1. Repeat what we did in Run1 and keep the PID cuts.
- 2. Filter on stripping removing the PID cut.
- 3. Filter on MC truth:
 - $\circ~$ 4 charge tracks on $\rm StdAllNoPiDPions/Kaons/Muons$
 - $\circ~$ And truth matched the decay channel: mcMatch('[B0 => K*(892)0mu + mu-]CC')

Why MCTruth?

⇒ We are using a very old stripping line that for sure can be (and should be) optimized for the final analysis of Run2!
 ⇒ Producing an MCTRUTH match sample would allow the sample to be reused for future analysis even if the stripping line will change!

Retentions

- \Rightarrow To study the solution I have used 2012 Physics MC.
- \Rightarrow I have taken 17.250 simulated events.
- \Rightarrow Here is the results:

Туре	Filter retention	Events in the ntuple	Truth Matched
Strip	3447~(20~%)	4975	1648
Strip no PID $_{\mu}$	3504~(20.3~%)	5176	1660
MCTruth	5009~(29~%)	4456	1660

 \Rightarrow Now I have cross check this running the same algorithms on stripped and non stripped MC always getting the same numbers.

 \Rightarrow For speed purpose I have put a cut on the $m_{K^*} < 1300 \text{ MeV}$ (can be adjusted if needed).

 \Rightarrow Other option to consider is to remove ISMUON form stripping to get all efficiencies from PIDCalib.

Plans

 \Rightarrow With Tom we feel that it would be best to ask for 200M generated events.

 \Rightarrow Also we noticed that we have 50M events of some old MC10 (Stripping 12) MC, which we propose to delete.

 \Rightarrow For PPG: The $R(D^*)$ have already got green light for more then 1000M generated events, so we getting the 200M should not be a problem.

 \Rightarrow To discuss: Do we want a flat $m(K\pi)$ sample or we can keep the K^* ?

Plans 2

 \Rightarrow Besides the normal $B \to K^* \mu \mu$ PHSP we should ask for other MC channels.

 \Rightarrow I proposed to scale the old numbers by factor: $\frac{5}{3}$.

Decay	DecFile event type	N. of events	N. of events Run2
$B \to K^* J/\psi$ (physics)	11144001	2M	3.5M
$B \to K^* J/\psi$ (PHSP?)	xxxxxxx	0	3.5M
$B ightarrow K^* \mu \mu$ (physics)	11114001	1M	1.5M
$\Lambda_b \to \Lambda(1530)\mu\mu$	15114000	1M	1.5M
$\Lambda_b \to p K \mu \mu$	15114011	2M	3.5M
$B_s^0 \to \phi \mu \mu$	13114002	0.6M	1M
$B_u \to K \mu \mu$	12113001	1M	1.5M

 \Rightarrow This would be unfiltered production and this MC will be needed for other analysis as well.

- \Rightarrow Do we want to simulate a flat q^2 in the $B \rightarrow K^* \mu \mu$?
- \Rightarrow Do we want to have a flat $K\pi$ mass distribution in the simulation?

MC model

Acceptance correction

⇒ The decay of $B^0 \rightarrow K^* \mu^- \mu^+$ is described by 3 helicity angles and the invariant mass squared of two leptons (q^2) .

 \Rightarrow In order to model the detector acceptance we have used a large MC sample of PHSP simulated events.

- \Rightarrow There is a caveat: the q^2 distribution.
- \Rightarrow We had to reweight it to make it flat.

Can we optimize it?

 \Rightarrow It would be nice if we could generate not only the flat angle distributions but also a flat q^2 .

- \Rightarrow There exists already a model for it: FLATQ2.
- \Rightarrow It basically reweighs the distribution by $1/p_T^{had}$.

 \Rightarrow The problem is that it was design to generate the flat distribution of decays $B \to X \ell \nu$:

 \Rightarrow Will not work in current version for $B \rightarrow K^* \mu \mu$.

Modifying the FLATQ21

 \Rightarrow I wrote a mirror model that requires that the two leptons are DIRAC, and called it FLATQ2EWP.

 \Rightarrow And improves the situation a lot:

/ 14

Modifying the FLATQ21

 \Rightarrow FLATQ2EWP use to simulate the $B \rightarrow K \mu \mu$:

 \Rightarrow Oki so end of the spectrum is understood and not much can be done there.

 \Rightarrow Now the low q^2 : Can this be just Phase space suppression: $\sqrt{\lambda}=\sqrt{1-4m_\ell^2/q^2}$

Marcin Chrząszcz (Universität Zürich)

 $B^0 \rightarrow K^* \mu^- \mu^+$ MC Filter

Modifying the FLATQ2 2

 \Rightarrow FLATQ2EWP with phase space suppression factor.

 \Rightarrow Now it's perfect.

Update since last week

 \Rightarrow Discussion was made via: JIRA

 \Rightarrow It was suggested my Michal to incorporate the new model into the current one to save the code.

 \Rightarrow Thanks to John for merging the two codes:

```
void EvtFlat02::init(){
 // check that there are 3 daughters
 checkNDaug(3);
 // We expect B -> X lepton lepton events
 checkSpinParent(EvtSpinTvpe::SCALAR):
 EvtSpinType::spintype d1type = EvtPDL::getSpinType(getDaug(1));
 EvtSpinTvpe::spintvpe d2tvpe = EvtPDL::getSpinTvpe(getDaug(2));
 if (!(ditype == EvtSpinType::DIRAC || ditype == EvtSpinType::NEUTRINO)) {
     EvtGenReport(EVTGEN ERROR, "EvtGen") << "EvtFlat02 expects 2nd daughter to "
                                          << "be a lepton" <<std::endl:
     EvtGenReport(EVTGEN ERROR."EvtGen") << "Will terminate execution!"<<std::endl:</pre>
     ::abort():
 3
 if (!(d2type == EvtSpinType::DIRAC || d2type == EvtSpinType::NEUTRINO)) {
     EvtGenReport(EVTGEN ERROR, "EvtGen") << "EvtFlat02 expects 3rd daughter to "
                                          << "be a lepton" <<std::endl:
     EvtGenReport(EVTGEN ERROR."EvtGen") << "Will terminate execution!"<<std::endl:</pre>
     ::abort():
 }
 // Specify if we want to use the phase space factor
 usePhsp = false;
 if (getNArg() > 0)
     if (getArg(0) != 0) { usePhsp = true;}
 EvtGenReport(EVTGEN INFO,"EvtGen") <<"EvtFlat02 usePhsp = "<<int( usePhsp)<<std::endl;</pre>
```

Update since last week

 \Rightarrow Discussion was made via: JIRA

 \Rightarrow It was suggested my Michal to incorporate the new model into the current one to save the code.

 \Rightarrow Thanks to John for merging the two codes:

```
void EvtFlat02::decay( EvtParticle *p){
  p->initializePhaseSpace(getNDaug().getDaugs());
  EvtVector4R p4Xu = p->getDaug(0)->getP4();
  EvtVector4R p4ell1 = p->getDaug(1)->getP4();
  EvtVector4R p4ell2 = p->getDaug(2)->getP4():
  double pXu x2 = p4Xu.get(1)*p4Xu.get(1):
  double pXu_y2 = p4Xu.get(2)*p4Xu.get(2);
  double pXu z2 = p4Xu.get(3)*p4Xu.get(3);
  double pXu = sqrt(pXu x2+pXu y2+pXu z2);
  double prob(0.0):
  if (fabs(pXu) > 0.0) {prob = 1/pXu;}
  // Include the phase space factor if requested
  if ( usePhsp) {
    double Lambda = lambda((p4ell1+p4ell2).mass(), p4ell1.mass());
   if (Lambda > 0.0) {prob=prob/sgrt(Lambda):}
  if (pXu > 0.01) {setProb(prob);}
```

FLATQ2 Conclusion

 \Rightarrow The new model was tested by me and John.

 \Rightarrow Changes won't have any influence on the existing DEFILES as the flag is by default switched off.

- \Rightarrow The commit was merge to master by Gloria today.
- \Rightarrow We thank all people involved action

 \Rightarrow The whole things took <week and is already available for production!

 \Rightarrow There is also other model XLL, see Biplab slides more suitable for $B \to K \pi \mu \mu.$

 \Rightarrow For the acceptance correction we propose to generate $B \to K^* \mu \mu$ with FLATQ2 and filter it on truth matching.

Backup

Marcin Chrząszcz (Universität Zürich)

This is not related to MC requests.

MCmatching studies.

 \Rightarrow Let's look how the candidates that have been matched by: mcMatch('[B0 => K * (892)0mu + mu -]CC') look like:

 \Rightarrow BKGCAT==10 is the pure signal. The mcMatch is not changing anything in that number of entries.

 \Rightarrow BKGCAT==30 is the K= $K \leftrightarrows \pi$ swaps. This goes away with some PID selection

MCmatching studies.

 \Rightarrow Now all BKGCAT==10 have true mcMatch:

 \Rightarrow How does BKKCAT==50,40 (missID +FSR, FSR)look like:

