# $\Lambda_c^+ ightarrow P \mu \mu$ Status Update and Plans for future





LHCL

on behalf of the  $\Lambda_c^+ \rightarrow p \mu \mu$  team: T.Lesiak(IFJ, Krakow), B.Nowak(IFJ, Krakow), M.Witek (IFJ, Krakow), L.Pescatore(EPFL, Lousanne), M.Stamenkovic(EPFL, Lousanne), M.Martinelli(EPFL, Lousanne)

> Analysis and Software Week, CERN April. 2017

# Topics covered in this presentation

- 1. Physics of  $\Lambda_c^+ \to \mathrm{p}\mu\mu$
- 2. Pre-Selection.
- 3. MVA selection.
- 4. PID.
- 5. Normalization.
- 6. Systematics.
- 7. Expected limits.
- 8. Run2 extensions.

## Physics of $\Lambda_c^+ \to p \mu \mu$ $\Rightarrow \Lambda_c^+ \to p \mu \mu$ is a FCNC in the charm sector:



- $\Rightarrow$  SM prediction:
- Short distance  $Br \sim \mathcal{O}(10^{-8})$
- Long distance  $Br \sim \mathcal{O}(10^{-6})$
- Expected to improve by  $\mathcal{O}(10^2)$

 $\Rightarrow$  Current experimental situation:

•  $Br(\Lambda_c^+ \to p\mu\mu) < 4.4 \times 10^{-5}$  at 90 %CL arXiv:1107.4465



# Strategy

- $\Rightarrow$  We follow the strategy of previous analysis:  $au 
  ightarrow \mu \mu \mu$  and
- $\tau \to p \mu \mu$ .
- $\Rightarrow$  Analysis based on 2011 and 2012 data sets.
- $\Rightarrow$  Blind the signal window:  $|m_{p\mu\mu}-m_{\Lambda^+}^{PDG}|<40~{\rm MeV}$
- $\Rightarrow$  We start from stripping and loose pre-selection.
- $\Rightarrow$  MVA:
- Signal MC.
- Background side-bands.
- $\Rightarrow$  k-Folding technique applied.
- $\Rightarrow$  Two BDT in used:
- BDT1 to first clean up the sample.
- BDT2 to further increase the sensitivity.
- $\Rightarrow$  Final 3D optimization: (BDT2, ProbNNp, ProbNNmu).
- $\Rightarrow$  Calculate the UL with  $CL_s$ .

# Trigger

 $\Rightarrow$  We decided to based the analysis on muon triggers:

#### • L0

- Lambda\_cplus\_L0MuonDecision\_TOS
- Lambda\_cplus\_L0DiMuonDecision\_TOS

## HLT1

- $\circ \ Lambda\_cplus\_Hlt1TrackMuonDecision\_TOS$
- $\circ \ Lambda\_cplus\_Hlt1DiMuonLowMassDecision\_TOS$
- Lambda\_cplus\_Hlt1TrackAllL0Decision\_TOS

# • HLT2

- Lambda\_cplus\_Hlt2CharmHadD2HHHDecision\_TOS;
- Lambda\_cplus\_Hlt2DiMuonDetachedDecision\_TOS;
- Lambda\_cplus\_Hlt2CharmSemilep3bodyD2KMuMuDecision\_TOS;
- Lambda\_cplus\_Hlt2CharmSemilepD2HMuMuDecision\_TOS;

Stripping

| Condition                    | $\Lambda_c^+ \to \mathrm{p}\mu\mu$ |
|------------------------------|------------------------------------|
| $\mu^{\pm}$ and $\mathrm{p}$ |                                    |
| $P_T$                        | $> 300 { m ~MeV/c}$                |
| Track $\chi^2$ /ndf          | < 3                                |
| IP $\chi^2$ /ndf             | > 9                                |
| PID $\mu^\pm$                | PIDmu> -5 and (PIDmu - PIDK) > 0   |
| PID $ m p$                   | PID <sub>P</sub> >10               |
| $\Lambda_{ m c}^+$           |                                    |
| $\Delta m$                   | $< 150 { m MeV/c}^2$               |
| Vertex $\chi^2$              | < 15                               |
| IP $\chi^2$                  | < 225                              |
| c	au                         | $> 100 \mu m$                      |
| Lifetime fit $\chi^2$        | < 225                              |

## Futher preselection

Common cuts  $m_{\mu\mu} > 250 \; {\rm MeV/c^2}$ proton ProbNNp > 0.1 $\mu^+, \mu^- ProbNNmu > 0.1$  $10~{\rm GeV/c} < p_{\rm proton} < 100~{\rm GeV/c}$ Signal channel  $|m_{\mu\mu} - m_{\omega}| > 40 \text{ MeV/c}^2$  $|m_{\mu\mu} - m_{\phi}| > 40 \text{ MeV/c}^2$ Normalization channel  $|m_{\mu\mu} - m_{\phi}| < 35 \text{ MeV}/c^2$ 

# MVA Selection 1/2

 $\Rightarrow$  The BDT1 uses a small set of available variables related to  $\Lambda_c^+$  candidate:

- Lambda\_cplus\_IP\_OWNPV
- Lambda\_cplus\_IPCHI2\_OWNPV
- TMath ::  $Exp(-1000 * Lambda_cplus_TAU)$
- Lambda\_cplus\_ENDVERTEX\_CHI2
- Lambda\_cplus\_PT
- Lambda\_cplus\_FD\_OWNPV
- Lambda\_cplus\_FDCHI2\_OWNPV



# MVA Selection 2/2



 $\Rightarrow$  We have choose a loose cut (BDT1>-0.1) to clean up the sample:



M.Chrzaszcz (UZH,IFJ)

/19

# Normalization

- $\Longrightarrow \Lambda_c \to \mathbf{p} \phi(\mu \mu) \text{:}$
- Same final state!
- Most of the systematics cancel in the ratio.
- Kinematics difference will only remain.
- Low Br:  $Br(\Lambda_c \rightarrow \mathrm{p}\phi(\mu\mu)) = (2.98 \pm 0.63) \times 10^{-7}$

- $\Longrightarrow \Lambda_c \to \mathrm{p}\pi\pi \text{:}$ 
  - Different final state!
- The systematics will not cancel in the ratio.
- Need to understand the  $\pi\pi$  spectrum.
- High branching fraction:  $Br(\Lambda_c \rightarrow p\pi\pi) =$  $(4.3 \pm 2.3) \times 10^{-3}$

#### We have chosen the $\Lambda_c \rightarrow p\phi(\mu\mu)$ as normalization channel.

# MVA Selection II

• Added variables related to the daughter tracks.





 $\Rightarrow$  The BDT was checked against the correlation with mass on MC background.

 $\Rightarrow$  All cross-checks passed.

#### PID

 $\Rightarrow$  The PID in this analysis is done using re sampling the PID distributions.

- PIDCalib for muons does not cover the low  $p_T$  muons (10 %) of the sample.
- We used the  $D_s \to \pi \phi(\mu \mu)$ .
- The same procedure was used in the different analysis with this problem.
- The sample is currently being included to the standard sample PID sample by PID WG.







/ 19

# Optimization

 $\Rightarrow$  Optimization was performed on a TOY MC sample.

⇒ The toys were generated using PDF from signal MC and sideband sample. ⇒ Optimization was done on grid of points, using 100 TOYs peer point. ⇒  $CL_s$  was used as FOM.









| Variable | Cut    |  |
|----------|--------|--|
| BDT2     | > 0.0  |  |
| ProbNNp  | > 0.68 |  |
| ProbNNmu | > 0.38 |  |

/ 19

# Peaking backgrounds 1/2

⇒ There are several sources of peaking background:

| Resonance | $BF(\Lambda^+_{\mathrm{c}} \to \mathrm{p}X)$ | $BF(X \to \mu \mu)$              | Total BF                         |
|-----------|----------------------------------------------|----------------------------------|----------------------------------|
| η         | -                                            | $(5.8 \pm 0.8) \times 10^{-6}$   | -                                |
| ρ         | -                                            | $(4.55 \pm 0.28) \times 10^{-5}$ | -                                |
| ω         | -                                            | $(9.0 \pm 3.1) \times 10^{-5}$   | -                                |
| $\phi$    | $(1.04 \pm 0.21) \times 10^{-3}$             | $(2.87 \pm 0.19) \times 10^{-4}$ | $(2.98 \pm 0.63) \times 10^{-7}$ |
| Resonance | $BF(\Lambda^+_{\mathrm{c}} \to \mathrm{p}X)$ | $BF(X \to \mu \mu \gamma)$       | Total BF                         |
| η         | -                                            | $(3.1 \pm 0.4) \times 10^{-4}$   | -                                |
| $\eta$    | -                                            | $(1.08 \pm 0.27) \times 10^{-4}$ |                                  |

 $\Rightarrow$  Unfortunately not all of the BF are known...

⇒ We took the adequate decay of D mesons. We ended up with BF  $\mathcal{O}(10^{-9})$  for not vetoed decays, which is much below our sensitivity (see further slides).

# Peaking backgrounds 2/2

- ⇒ The other peaking background is a harmonic decay  $\Lambda_c^+ \rightarrow p\pi\pi$ . ⇒ Estimated from MC sample
- $\Rightarrow$  Used the resampled PID response.
- $\Rightarrow$  Observed number of events in the signal window.





# Normalization

 $\Rightarrow$  Master equation:

$$\frac{Br(\Lambda_c \to \mathbf{p}\mu\mu)}{BR(\Lambda_c \to \mathbf{p}\phi(\mu\mu))} = \frac{\epsilon_{\mathrm{norm}}^{\mathrm{TOT}}}{\epsilon_{\mathrm{sig}}^{\mathrm{TOT}}} \times \frac{N_{\mathrm{sig}}}{N_{\mathrm{norm}}},$$

#### where



# Systematics

| Uncertainty source                             | Value  |
|------------------------------------------------|--------|
| Efficiency ratio $R_{strip}$ (statistical)     | 0.2 %  |
| Efficiency ratio $R_{comm}$ (statistical)      | 3.37 % |
| Efficiency ratio $R_{comm}$ (BDT2 cut)         | 0.4 %  |
| Efficiency ratio $R_{comm}$ (PIDCalib samples) | 0.71 % |
| Width of the signal peak                       | 0.55 % |
| Yield of normalization channel                 | 11.8 % |
| Dedicated PID resampling                       | 0.26 % |
| $\Lambda_c \to \mathrm{p}\phi(\mu\mu)$         | 21.5 % |
| Variation of signal decay model                | 15.3 % |

# **Expected** limits

 $\Rightarrow$  Putting all together one gets:



#### The expected limits:

$$Br(\Lambda_c 
ightarrow \mathrm{p}\mu\mu) < 5.9 imes 10^{-8}$$
 at  $90\%~\mathrm{CL}$ 

 $\Rightarrow$  The RC started looking at the ANA note.

M.Chrzaszcz (UZH,IFJ)

°/19

# Run 2 plans

- $\Rightarrow$  We already started working on Run2 analysis.
- $\Rightarrow$  The program is expanding:
- $Br(\Lambda_{\rm c}^+ \to {\rm p}\phi$
- $Br(\Lambda_{\rm c}^+ \to {\rm p}\mu\mu)$
- $R(\Lambda_{\rm c}^+) = \frac{Br(\Lambda_{\rm c}^+ \to {\rm p}\mu\mu)}{Br(\Lambda_{\rm c}^+ \to {\rm p}ee)}$
- LFV:  $\Lambda_c \to \mathrm{p}\mu e$
- and maybe more ideas?



#### $\Rightarrow \Lambda_{c}^{+}$ is a exciting system that is not fully explored! $\Rightarrow$ We have a reach physics program to be studied with Run2 data.

# Backup

