

Muon isolation for Drell-Yan

Inclusive $Z/\gamma^* \to \mu \mu$ production cross-section

Andreas Weiden Universität Zürich

Isolation

Define minimum isolation as:

 $max(p_T(\mu^+)_{R=0.5} - p_T(\mu^+)_{R=0.1}, p_T(\mu^-)_{R=0.5} - p_T(\mu^-)_{R=0.1})$

Selection

Require one of the DY lines to fire:

- Z0_L0DiMuonDecision_TOS
- $\ Z0_HIt1DiMuonHighMassDecision_TOS$
- Z0_Hlt1DiMuonLowMassDecision_TOS
- Z0_Hlt2DiMuonDY2Decision_TOS
- Z0_Hlt2DiMuonDY3Decision_TOS
- Z0_Hlt2DiMuonDY4Decision_TOS
- Z0_Hlt2DiMuonUnbiasedZmmDecision_TOS

Selection

Additional selection cuts:

- $p_T(\mu^{\pm}) > 3$ GeV $/c^2$
- $p(\mu^{\pm}) > 10 \; {
 m GeV}/c^2$
- $-2 < \eta(\mu^{\pm}) < 4.5$
- $Prob(\chi^2_{track}) > 0.001$
- $\chi^2_{vertex}/\textit{ndf} < 5$

Apply a 2D re-weighting of the MC, so it matches the 2012 data in (*nSPDHits*, *nTracks*).

Isolation as a function of mass

Normalized log(isolation) in selected mass bins:

Andreas Weiden: Drell-Yan

Mass dependency of bulk

MC, 2012

Effect of rapidity

Z-peak

Strong dependency of bulk fraction of rapidity.

Effect of rapidity Z-peak

Effect of rapidity

Full mass-range

Rapidity distribution is not the same for different mass-bins (different regions in x). Working on finding out if mass dependence is given by this.

Conclusions

- MC isolation template describes data at Z-peak reasonably well
- But some differences exist, so have to take templates from data (MC can still serve as cross-check)
- Templates show a mass-dependence in MC (especially bulk fraction)
- Different mass-regions have different rapidity distributions
- Needs to be determined if mass-dependence is driven by rapidity-dependence

Mass dependency of bulk

More plots

Signal purity

Around the Z-peak, the purity reaches close to 100%. Nevertheless, there can be some background left. Do an *sPlot* fit to get purely Z-contribution.

Signal purity

The Υ -peak is not as pure, using a *Hypatia* function as signal and a first-order Chebychev-polynomial as background.

January 30, 2017

Mass dependency of bulk

Effect of multiplicity

Isolation should, in general, be dependent on multiplicity. First, check if multiplicity is mass dependent.

Effect of multiplicity

January 30, 2017

Effect of multiplicity

At Z-peak ($60 < M_{\mu\mu} < 120 GeV/c^2$). Bulk width not independent of *nSPD*:

Multiplicity reweighting

Data, MC befor reweighting, MC after reweighting

