Low Mass Drell-Yan Status Report

Marcin Chrząszcz Katharina Müeller Nicola Chiapolini

Electroweak WG, CERN September 7, 2015

Introduction to Drell-Yan

- Drell-Yan are process of two quark anihilations in which neutral coupling to two leptons.
- The cross section of this process depends on two components:
 - Hard scattering process ⇒ NNLO pQCD.
 - Parton Distribution Function (PDF).
- Measurement of the cross section have a high sensitivity to the PDF
- Due to unique coverage 2 < y < 5 LHCb probes the $Q^2 x$ region not covered by other experiments.

Selection

- Main topic of Nicolas PhD.
- Analysis based on 2011 data set.
- Trigger:
 - LO_LODiMuonDecision,
 - Hlt1DiMuonHighMassDecision,
 - Hlt2DiMuonDY(3,4)Decision
- Stripping:
 - StrippingDY2MuMuLine(3,4)
- Selection:
 - $\circ 2 < \eta^{\mu} < 4.5$
 - $\circ~p^{\mu} > 10~{
 m GeV}$,
 - $\circ~p_T^{\mu} > 3~{
 m GeV}$,
 - $\circ \ \chi_{vtx}^{2,\mu\mu} < 5,$
 - $0 10 < m(\mu\mu) < 120 \text{ GeV}.$

Bins of search

 \Rrightarrow The measurement will be performed in the bins of dimuon mass and pseudo-rapidity:

$M_{\mu\mu}\;[{\rm GeV}/c^2\;]$	10.5 - 11.0 $12.0 - 13.0$		11.5 - 12.0 $14.0 - 15.0$
	15.0 - 17.5		20.0 - 25.0
	60.0 - 70.0 $90.0 - 100.0$	70.0 - 80.0 $100.0 - 110.0$	80.0 - 90.0 $110.0 - 120.0$
\overline{y}	2.0 - 4.5		

$M_{\mu\mu} [\text{GeV}/c^2]$	$\begin{array}{rrr} 10.5 & -12.0 \\ 15.0 & -20.0 \end{array}$	$\begin{array}{ccc} 12.0 & -15.0 \\ 20.0 & -60.0 \end{array}$	
y	2.75 - 3.0	$\begin{array}{ccc} 2.25 - & 2.5 \\ 3.0 & - & 3.25 \\ 3.75 - & 4.0 \end{array}$	3.25 - 3.5

Isolation

- Drell-Yan unfortunately do not peak in mass need another variable to control the purity.
- Instead we define an isolation variable:

$$\mu_{\mathrm{iso}} = \log(p_T^{cone}(\mu, 0.5) - p_T^{cone}(\mu, 0.1))$$

For two muons we take the maximum of the two isolations:

$$\mu\mu_{\rm iso} = \max(\mu_{\rm iso}^+, \mu_{\rm iso}^-)$$

Isolation mass dependence

• Unfortunately the $\mu\mu_{iso}$ is showing some mass dependence:

Backgrounds

- There are two sources of backgrounds:
 - Heavy flavour decays.
 - Mis-ID.
- For fitting the $\mu\mu_{iso}$ we need to know both the signal and background distribution.
- Background templates can be determined from data

 - Heavy flavour decays: \hookrightarrow Requiring the $\chi^{2,\mu\mu}_{vtx} > 16$
 - \hookrightarrow For cross-check $\mathrm{IP} > 5~\mathrm{mm}$
 - Miss-ID:
 - → Require that both muons have the same sign.
 - → For cross-check take the minimum bias stripping line.

Signal template

- We do not want to use MC for determination of the signal $\mu\mu_{iso}$ template.
- We adopted a data driven procedure:
 - \circ The template is taken from data and scaled to account for $\mu\mu_{iso}$ mass dependence.
- Possibility 1:
 - \circ Take the Splot $Z \to \mu \mu$ from data and multiply it by the scale factor determined from minimalising the χ^2 between MC Z and DY in particular region.

Signal template

- Possibility 2:
 - \circ Use a second decay from data: $\Upsilon \to \mu \mu$.
 - \circ The template for a given mass range $(M_{\rm min}, M_{\rm max})$ is choose as:

$$\operatorname{Temp}(M) = \\ \operatorname{Temp}^{\Upsilon} \frac{(M_Z - M_{\Upsilon} - (M - M_{\Upsilon}))}{M_Z - M_{\Upsilon}} \\ + \operatorname{Temp}^{Z} \frac{M - M_{\Upsilon}}{M_Z - M_{\Upsilon}}$$

 Then the new obtained template is scaled in the same way as the previous one.

Signal template

Possibility 3:

- The one problem with this distributions is that the first bin is insensitive to scaling factors.
- On top of the previously defined template we define an additional scaling factor that modifies the ratio between the first and the rest of the bins.
- The second scaling factor is the same as previous.

Signal template - Summary

- We are investigating the impact on the analysis for the different approaches
- For now it looks like the results are within the statistical error of the fits.
- The reason for this that in the high pseudo-rapidity region 4 < y < 4.5 there is very small number of Z decays, so the additional Υ decays are helping.
- We are considering constrainting the background shape in the fits (we know background is exponential in mass).

Conclusions

- ⇒ Work that still needs to be done:
- Checking the efficiencies.
- Unfolding the mass distribution.
- FSR corrections.
- Write up the note for WG review.

Backup

