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Rare Decays at LHCb

Muonic B decays

Br BY/BY — pup/ 7.

Br + Ang. B — K" jup.

Br + Ang. Bf — QL.
Isospin B — K.

CP asymmetry B — mupu.

= See G.Andreassi talk for
Luvi

Strange decays
Charm decays
L K — pp.

D— mmup
D — Krpp Radiative decays

D — epu. B Ky

= Enormous Physics program BSO — @

which is constantly expanding. B /B — J~y

= Will cover only part of the

results. = See H.Evans talk.
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Byja — 1 arXiv:1703.05747

LHCb
BDT>0.5

= Golden channel for LHCb.
= Normalized to the B — K7 and

Candidates / ( 50 MeV/c?)
J—+J—L

3

B— KJ/ ¢ B a3 o A
= The selection is achived by BDT R
trained on MC and calibrated on data. ~ 09X10” :
7 oosf LHCb ]
& i = 07F E
BB’ — pp) = (3.0 £0.6703)10~" 2 0% 1
7.8 o significant! ot E
ot 1.
0 Y0 P 4 G ) é‘ . 10
B(Bj — pp) < 3.4 x 10~ BFG, = w0
d’ ILHCh

Effective lifetime

Sensitivity to non-scalar NP.
7(B% — pp) = 2.04 + 0.44 + 0.05ps
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Byja — 1 arXiv:1703.05747

= Golden channel for LHCb. ]
= Normalized to the B — K7 and

5000 5200 5400 5600 5800 6000

= The selection is achived by BDT : R
trained on MC and calibrated on data. S
BB — up) = (3.0 0.6703)10° e
7.8 o significant! ;
B(B] — pp) < 3.4 x 107", 90%C s 7 . T
Effective lifetime i J{ s ]
Sensitivity to non-scalar NP. :
7(B? — pp) = 2.04 + 0.44 £ 0.05ps

Decay time [ps]
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Bs/d — 7T arXiv:1703.02508

= NP sensitivity enhanced due to LHCb simulation »
the high 7 mass. S noof g gk g
. 2 o)
= More challenging: at least 2v % *a
are escaping. & 15
= Selecting 7 — 37v, — 9.31 % o
= Normalization channel:
5
B — D(Kn)Dy(KK). i ,
= No peak in the B mass window %0 400 o0 800 1000 1200
. m... [MeV/c?]
— fit the NN output. o
» 0.16,
g ! = LHCb simulation
= 097 LHCb 3 014 Bl>tr
Z 08 < 0128, +
E RS -
0.7 E
. R e
F S 0.08- 4
055 S
0_43 B 0.06
03F 0.04F
E F -+ Signal reglon
?)215_ 002 -+ Control reglon
0: 0 0]0‘2 0.3 04 0‘5 0.6 07 0‘809 1
0.002  0.004 0.006 0.008  0.01 Neural network output
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Ay — prpp

=> First observation of b — d in baryon
system!
= BDT selection trained on MC
= Normalized to A, — pmjfi

= With futher QCD improvements we will
Vsl

Al

t.s‘

be able to to measure e
D
w—nui( 012 + 0.007 =
»— DT/ s
. . «
o significance!  First observation. @
{=¥
8
. , , 3
% 30/~ LHCD —— Data B é
3 . 8
Q — Signal and bkg
gy b Aspm |
9_3 """ Combinatorial
é 10 Part reco N
° - Al
5500 6000 6500 7000
My / (MeV/c?)
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J. High Energy Phys. 04 (2017) 029

d

u

- = N W W
w o o S L S O
S & & & & & ©

TR T T T T T
T T T T T T T

=3

LHCb

—— Data

— Signal and bkg
= Ay prlly

———— Combinatorial

A pKIY

|
5400

B(Ay — prpp) =
69+1.9+1.1%77

A
5600

6000
/ (MeV/c?)

5800

My

) x 1078



Search for light scalars

= Hidden sector models are gathering

more and more attention.

= Inflaton model: new scalar then

mixes with the Higgs.

= B decays are sensitive as the

inflaton might be light.

= Searched for long living particle x

produced in: B — x(up)K.

= Analysis performed blindly as a

peak search.
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Phys. Rev. D 95, 071101 (2017)
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bl
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BR(B* K’ 1) x BR(x — u'i)

Nl

4000 '
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Kg " PAPER-2017-009

= pp collisions create enormous amount
of strange mesons.

= Can be used to search for Kg — [Lfh. cH

0.95 LHCb -
= SM prediction:
BKE — pp) = (5.0 £ 1.5) x 102 :
= Dominated by the long distance osst .
effects. o i

2 3
B(K—u ) x10°

= Bkg dominated by Kg — T,

o 10 . . : = No significant enhanced
2 of T s LHCb of signal has been observed
c 10'F and UL was set:

g 10

E B(K — pp) < 0.8(1.0)x 10"
© at 90(95)% CL

. . . | 7
420 440 460 480 500 520
m,... [MeV/c?]
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- K'pu pt decay

JHEP 02 (2016) 104, CMS-PAS-BPH-15-008,

ATLAS-CONF-2017-023, Phys. Rev. Lett. 118 (2017)

= BO N K*M—M-i-
NP hunting!

= Reach angular observables makes
is sensitive to different NP models
= In addition one can construct less
form factor dependent observables:

is a smoking gun for

Ss

Pl=—=___
* T V(- Fy)

= In single analysis observed 3.4 o
discrepancy in the Cy WC.
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Branching fraction measurements of B — QL

:E 95— T T g sF ‘ Tz .
G i
°§ 65— =y 12 .. - o :_-_ . .
g 4F 2 g =
S+ I B o
X F—— =§Mpred. T s :
2 2 TiE e TR TR
01; 1 z— Y (wide)—z b .g.-_'_ _'_E ~ L “LHCb
E 0= 1 | 1 3 0--f - : - T . -
~ ’ v qlz5 [GeV¥ed] * nf(}‘@K*wp*)S[EeV/cq

Recent LHCb measurement, JHEPQ9 (2015) 179.
Suppressed by %

Cleaner because of narrow ¢ resonance.
3.3 o deviation in SM in the 1 — 6GeV? bin.

Angular part in agreement with SM (S5 is not accessible).
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https://cds.cern.ch/record/2029820/files/JHEP09-179.pdf

Theory implications of b — sl¢ JHEP 06 (2016) 092

e A fit prepared by S. Descotes-Genon, L. Hofer, J. Matias,
J. Virto.

e The data can be explained by modifying the Cy Wilson coefficient.
e Overall there is > 4 o discrepancy wrt. the SM prediction.

30 T v - T . m 3 T ..,..._]‘.:
2E "’\:‘\'5&,, | ] oL
H S
E T £ IATLAS JIATLAS
1 ] e £ Belle] 1 Sello
> N cMs =
i ) j 71 LHCb I:I ux(lfb
y ’ Al 3 1 N
- [ e -1} b
-2 -2 \\“
-3L ] -3 1‘
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
NP NP
CQI-' CQ;/
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If not NP?

e We are not there yet!
e There might be something not taken into account in the theory.
e Resonances (J/1), 1(25)) tails can mimic NP effects.

e There might be some non factorizable QCD corrections.
" However, the central value of this effect would have to be
significantly larger than expected on the basis of existing
estimates” D.Straub, arXiv:1503.06199.

;I
22280000 i

'
22220000
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http://arxiv.org/abs/1503.06199

If not NP?

e We are not there yet!
e There might be something not taken into account in the theory.
e Resonances (J/1), 1(25)) tails can mimic NP effects.

e There might be some non factorizable QCD corrections.
" However, the central value of this effect would have to be
significantly larger than expected on the basis of existing
estimates” D.Straub, arXiv:1503.06199.

P .

-3 -2 -1 12 3
cop

= See F.Polci talk.
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http://arxiv.org/abs/1503.06199

Measurement of phase difference  Phys. Rev. D 95, 071101 (2017)
u,d

S

= One could try to measure the phase
difference between the resonances and g I, 31,
the nonresonant amplitudes to see if the
interference is large enough to explain the
effects.

= Measured firstly done for the decay

B — Kup.

= The analysis based:

Cgff = 09+Y(q2) =3 Cg—f—z njelézA;es(qQ) 0002000 30'(‘)(; 5000

migs [MeV/c?]
J ¢

LHCb

Re(Cy)

= The amplitudes are modelled

Briet-Wigner and Flatte functions.
= Interference cannot explain the ~
observed anomalies.

b
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Conclusions

Clear tensions wrt. SM predictions!

Measurements cluster in the same direction.

e We are not opening the champagne yet!

Still need improvement both on theory and experimental side.

Time will tell if this is QCD+fluctuations or new Physics:
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Conclusions

Clear tensions wrt. SM predictions!

Measurements cluster in the same direction.

e We are not opening the champagne yet!

Still need improvement both on theory and experimental side.

Time will tell if this is QCD+fluctuations or new Physics:

"... when you have eliminated all the

Standard Model explanations, whatever remains,
however improbable, must be New Physics.”
Prof. Joaquim Matias
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Thank you for the attention!

30 siides i 10
minutes... 1§ that
o Jore?,

1 hove no idea
what ERFCI stonds
for.. is it a.
Tatellite or a metric?

AL
really need to
make a dentist
appoLntment.

1 should coleulate
the ¥ value?
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Backup
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Theory implications

Coefficient Best fit 1o 30 Pullgy;  p-value (%)
o —0.02 [-0.04,—0.00] [-0.07,0.04] 1.1 16.0
cr —1.11 [-1.32,-0.89] [-1.71,-0.40] 4.5 62.0
oy 058 [0.34,084]  [-0.11,1.41] 25 25.0
[t 0.02  [-0.01,0.04]  [-0.05,0.09] 0.7 15.0
cyr 049 [0.21,0.77] [-0.33,1.35] 18 19.0
iy —0.27 [-0.46,—0.08]  [-0.84.0.28] 14 17.0
v =iy =021 [-0.40,0.00]  [-0.74,0.53] 1.0 16.0
P = —C}F —0.69 [-0.88,-0.51] [-1.27,-0.18] 4.1 55.0
cor =y —0.09 [-0.35,0.17]  [-0.88,0.66] 0.3 14.0
CoF = -Cly 020 [0.08,0.32] [~0.15,0.56] 17 19.0
CYF = —C}JF —1.00 [-1.28,—0.88] [-1.62,-0.42] 4.8 72.0
CNP — NP
Y op e =068 [-0.49,-049] [-1.36,-0.15] 39 50.0
==Cy ==Cly
CNP — NP
. —0.17  [-0.29,—0.06] [-0.54,0.18] 15 18.0
=C3F = =Cy

Table 2: Best-fit points, confidence intervals, pulls for the SM hypothesis and p-values for
different one-dimensional NP scenarios.
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If not NP?

e How about our clean P; observables?
e The QCD cancel as mentioned only at leading order.

e Comparison to normal observables with the optimised ones.

3 3
Angular Observables (S;) | Angular Observables (S))
2 Angular Observables (P)) of 71 Angular Observables (P,
] AlP) ) aney
1 10 P
o az
%0 ; T o
P |
| )
3 /
-1 ) / -1
-2 -2]
| TR T R S R S30
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
e o
9 9
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Transversity amplitudes

= One can link the angular observables to transversity amplitudes

2+8)) am}
L 2 L2 R 2 R 2 L ,R* L  R*
N o= P [AL P 1A P AT 1A ]+ SEre (af AT+ af Al
q
4'm,2
L2 R 2 ’ 2 L  R* 2 2
Je = A8 +1a? + 2 [\At| + 2Re(AL Al >]+ﬁl lAg|?,
q
ﬁ2
L 2 L2 R 2 R 2 2 L2 R 2
Jas = Ie[lAJ_‘ HIATT H 1AL + 1A ], Jae = =B [\Ao| + 149 | ]7
1 2 L 2 L 2 R 2 R 2 1 2 L ,L* R ,R*
Js = She [\AJ_\ — AT+ 1AL =14y }v Jy = —0 [RG(AOAH + A0 4 )];
2 V2
L, L R,R m L R
Js = V2B, [Re(agal” — agal") - ZL Re(afAf + A As)]
2
Ve
L L* R R* m L R*
Jos = 2B [RQ(AH AL —AyAL )]1 Joe = 4B [2 Re(Ag A5 + 4 Ag),
Ve
L,L* ,R,R* m L R*
Jr = V28, [Im(AGA[ T - AGART) + T Al A - AT Ag))]
2
q
1 2 L,L* R, R* 2 L* L R* R
Jg = \/—532 [Im(AOAi +AgAL )] , Jg =By [Im(AH Al + A AA):I )
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Link to effective operators

= So here is where the magic happens. At leading order the amplitudes
can be written as (soft form factors):

L,R N £f £/ ’ 27 £f ££/

Ayt o= ﬁNmBu—s)[(cS +C5 ) F (Cro+Cro) + 7 (CT +C7 >}sl<EK*>
L,R R £f £f 21 £f £f

A = —V2Nmpg(1-8) [(cg -cg ’)1(c10—c10)+7”(c$ —cs /)} €1 (B, +)
L.R Nmp(1 - 3)° £f £f £f £f
s — ’ ’ N ’

Ag = -—5 [(CS —C5 ) F (Cyo — C1o) + 2y (C7 — C7 )]énw,{*),

2mK*\/g

where § = q2/m23, m; =m;/mp. The §| | are the form factors.
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Link to effective operators

= So here is where the magic happens. At leading order the amplitudes
can be written as (soft form factors):

L,R N £f £/ ’ 27 £f ££/

Ayt o= ﬁNmBu—s)[(cS +C5 ) F (Cro+Cro) + 7 (CT +C7 >}sl<EK*>
L,R R £f £f 21 £f £f

A = —V2Nmpg(1-8) [(cg -cg ’)1(c10—c10)+7”(c$ —cs /)} €1 (B, +)
L.R Nmp(1 - 3)° £f £f £f £f
s — ’ ’ N ’

Ag = -—5 [(CS —C5 ) F (Cyo — C1o) + 2y (C7 — C7 )]5"<EK*),

ZmK*\/g

where § = q2/m23, m; =m;/mp. The §| | are the form factors.
= Now we can construct observables that cancel the £ form factors at

leading order:

Pl = Js + Js

24/~ (J5 + J5)(J5 + J3)
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B — K'u~ " kinematics

= The kinematics of B’ — K*1~ et decay is described by three angles
6,, ;.. ¢ and invariant mass of the dimuon system (q2).

= cos 0} the angle between the
direction of the kaon in the K* (K")
rest frame and the direction of the
K* (K*) in the B° (B°) rest frame.
= cos 6;: the angle between the
direction of the p~ (,u+) in the
dimuon rest frame and the
direction of the dimuon in the B°
(Bo) rest frame.

= ¢: the angle between the plane
containing the x4~ and 1" and the
plane containing the kaon and pion
from the K*.

(a) B and 8, definitions for the B decay

<7

(b) ¢ definition for the B® decay

N S
: 135

sn (D

(c) ¢ definition for the B® decay
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B — K'u~ " kinematics

= The kinematics of B® — K*1~ et decay is described by three angles
0;, 8., ¢ and invariant mass of the dimuon system (q2).

4

ar 9 L2 2 .2 2
———————— =  ———|/issin Op + Jy.cos” Op + (Jy,sin” Op + Jy . cos™ O ) cos 20,
dq” dcos 0 pc dcos 0 dé 327

+J3 sin2 0 sin2 0 cos2¢ + J, sin 20 p sin 20, cos ¢ + J5 sin 20 sin 6; cos ¢

+(Jga sin® 0 + Jg, cos” 05 ) cos 0, + Jo sin 20, sin 0 sin ¢ + Jg sin 20 ;¢ sin 20, sin ¢

+Jg sin 0 sin” 0, sin 24 ,

= This is the most general expression of this kind of decay.
= The C'P averaged angular observables are defined:

Ji + J;
(dl + dI') /dq®

Rare Decays at LHCb

i
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Link to effective operators

= The observables .J; are bilinear combinations of transversity ampli-

L,R L,R L.,R
tudes: A7 ,A” , Ay

= So here is where the magic happens. At leading order the amplitudes
can be written as:

L,R R £f £f 2 £f £

AT = VANmp(1-3) [(CS +C5 ) F (Cro+Cro) + (€T +CF ’)} €1 (B, +)
L,R R £f £f 2m £f £f

A = —V2Nmp(l-3) [(CS - /):F(CIO *CQO)JFTIJ(C; —-c7 ,):| 1L (B =)
L,R Nmp(l - 38)° £f £f £f £f

, 7 ’ ’ . ’
A = - —=— [(cg —Cg ) F (Cig — Clo) + 2, (C7 —Co )] ) (B ox)s
2mK*\/§

where § = ¢*/m%, m; = m;/mp. The §)|,L are the soft form factors.
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Link to effective operators

= The observables .J; are bilinear combinations of transversity ampli-

L,R L,R L.,R
tudes: A7 ,A” , Ay

= So here is where the magic happens. At leading order the amplitudes
can be written as:

L,R R £f £f 2 £f £

AT = VANmp(1-3) [«:s +C5) F (Cro+Cro) + (€7 +C7 ’)} €1(Bx)
L,R R £f £f 2m £f £f

A = —V2Nmp(l-3) [(CS - /):F(CIO *CQO)JFTIJ(C? —-c7 ,):| 1L (B =)

2

L,R Nmpg(1l—3) £f £f R £f £f

Ag = -—2— [(CS —C5") F (Crp — Cro) + 2y (C7 —CF ,):I &) (B g,

2mK*\/§

where § = ¢*/m%, m; = m;/mp. The §)|,L are the soft form factors.
= Now we can construct observables that cancel the £ soft form factors
at leading order:

Js + Js
—(J5 + J3)(J5 + J3)

Rare Decays at LHCb

P =

2
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Symmetries in B — K"

= We have 12 angular coefficients (S;).
= There exist 4 symmetry transformations that leave the angular dis-
tributions unchanged:

L
. Aj ; Ak ; Ay
1= (re) o = (Cgre) o mo= ()
A —A7 Aq
! — Un, = L 0 cos® —sinf coshif  —sinhif
ng =Un; = o TR sin 6 cos 6 — sinh i@ coshid | M-

= Using this symmetries one can show that there are 8 independent
observables. The pdf can be written as:

1 d(r + 1) 2
‘ =32Lﬂ_|:%(1—FL)sln 0
P

- 2

d(T + T') /dg~ dcos; dcosb,, d¢

(T +T)/dg L )
+ Fy cos™ 0, + Z(l — Fy,)sin” 0, cos 20,

— Fp, cos2 0), cos20; + S3 sin2 0y sin2 0, cos2¢
+ S, sin 260, sin 20, cos ¢ + Sy sin 260, sin §; cos ¢
+ %AFB sin2 0y, cos 0; + Sy, sin 20, sin 6, sin ¢

+ Sg 5in 20, 5in 20, sin ¢ + Sq sin” 0, sin” 0, sin 26|
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