Update on $au o \mu\mu\mu$ searches

J.Albrecht¹, M.Calvi², <u>M.Chrzaszcz^{3,4}</u>, L. Gavardi², J.Harrison⁵, B. Khanji²,G. Lafferty⁵, E. Rodrigues⁵, N. Serra⁴, P. Seyfert⁶

September 6, 2013

Dortmund, ² Milano, ³ Zurich, ⁴ Krakow,

Manchester, ⁶ Heidelberg

University of Zurich^{UZH}

- **1** MC Samples
- 2 Normalization
- Peaking backgrounds
- 4 MVA development
- **6** Binning optimisation
- 6 Model dependence
- Conclusions

Status

1fb⁻¹ analysis of $\tau \to \mu \mu \mu$ and $\tau \to p \mu \mu$ appeared in PLB.

Searches for violation of lepton flavour and baryon number in tau lepton decays at LHCb $^{\dot{\alpha}}$

LHCb Collaboration

ARTICLE INFO

Article history: Received 17 April 2013 Received in revised form 27 May 2013 Accepted 29 May 2013 Available online xxxxx Editor: I. Rolandi ABSTRACT

Searches for the legon flavour violating decay $r^- \rightarrow \mu^- \mu^+ \mu^-$ and the legon flavour and bayon number violating decay $r^- \rightarrow \mu^+ \mu^+ \mu^-$ and $r^- \rightarrow \mu^- \mu^-$ has been carried out using proton-proton collision data, corresponding to an integrated luminosity of 1.0 fb⁻¹, sketch by the UiCh experiment at $(x^- - + v^-)^2$, the vertices that here it load from any signal, and timis the been set at start confidence $(x^- - + v^-)^2$, the vertice $(x^- - v^-)^2$ and $(x^- - v^-)^2$ and $(x^- - v^-)^2$ and $(x^- - v^-)^2$ decay modes represent the first direct experimental limits on these channels.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.

2011 results:

- ① Obtained limit for $\tau \to \mu\mu\mu$: 8.0×10^{-8} .
- \odot Belle(BaBar) results: $2.1(3.2) \times 10^{-8}$ at 90% CL.
- **3** For 2012 + 2011 planned to implement several improvements.

Generated MC samples

- In 2011 analysis one of the biggest contributions to the systematic error from MC was the reweighting the MC signal for the correct cross section.
- For 2012 we solved this problem by simulating signal in 5 parts. One for each production channel:

$$\tau \rightarrow \mu\mu\mu = \begin{cases} \mathsf{B} \rightarrow \tau \rightarrow \mu\mu\mu & 11.6\% \\ \mathsf{B} \rightarrow \mathsf{D_s} \rightarrow \tau \rightarrow \mu\mu\mu & 8.7\% \\ \mathsf{B} \rightarrow \mathsf{D} \rightarrow \tau \rightarrow \mu\mu\mu & 0.2\% \\ \mathsf{D_s} \rightarrow \tau \rightarrow \mu\mu\mu & 75.0\% \\ \mathsf{D} \rightarrow \tau \rightarrow \mu\mu\mu & 4.4\% \end{cases}$$

MC Generator Cuts

In order to use computing resources in more efficient way we introduced generator level cuts.

Signal sample ¹		Background sample(Dimuon) ²		
$p_{t\mu}$	> 250 <i>MeV</i>	$ ho_{t\mu}$	> 280 <i>MeV</i>	
p_{μ}	> 2.5 <i>GeV</i>	p_{μ}	> 2.9 <i>GeV</i>	
		$m(\mu\mu)$	< 4.5 <i>GeV</i>	
		$DOCA(\mu\mu)$	< 0.35 <i>mm</i>	

Gain a factor of $\sim 2-3$ in signal statistics compared to 2011.

$$^{-1}X \rightarrow au \rightarrow 3\mu$$
, $D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu$, $D_s \rightarrow \phi(\mu\mu)\pi$

 $^{^{2}}c\bar{c}$, $b\bar{b}$

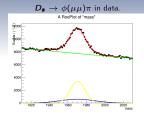
Trigger lines

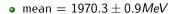
In 2011 we took all trigger lines into account. Studies shown we can gain on limiting our self to specific lines (2011 data sample).

Line Name	ϵ [%]	ϵ' [%]	β [%]	β'[%]
Hlt2CharmSemilepD2HMuMu	81.7	81.7	56.8	56.8
Hlt2DiMuonDetached	75.0	12.5	54.1	17.6
Hlt2TriMuonTau	66.3	2.9	60.0	12.2
Others	_	2.2	_	11.6

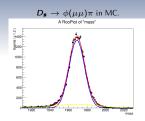
, where ϵ is the signal efficiency, ϵ' is the gain of the efficiency, β is the efficiency of background and β' is the gain of the bck efficiency Rule of thumb (using Punzi FOM) tells us that we can gain $\mathcal{O}(5\%)$.

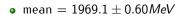
Normalization channel

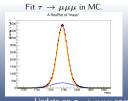

As last year we will use $D_s \to \phi(\mu\mu)\pi$. Similar as signal channels we produced them with correct proportion:


- \bullet $cc \rightarrow D_s \rightarrow \phi(\mu\mu)\pi$ 89.7%
- 2 $bb \rightarrow D_s \rightarrow \phi(\mu\mu)\pi 10.3\%$

We avoid reweighing of the samples as in 2011.




Mass correction



Update on $au o \mu \mu \mu$ searches

Cross section update

Analysis uses the knowledge of $c\overline{c}$ and $b\overline{b}$ cross sections. In 2011 both were measured by LHCb. For 2012 for the moment we assume:

•
$$\sigma_{b\overline{b}}^{8TeV}=298\pm36\mu b$$
 form LHCB-PAPER-2013-016

•
$$\sigma_{c\overline{c}}^{8\text{TeV}} = \sigma_{c\overline{c}}^{7\text{TeV}} imes \frac{8}{7} = 6950 \pm 1100 \mu b$$

Cross checks on $c\overline{c}$

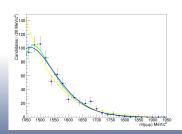
- \bigcirc Comparing D_s yields in data.
- 2 Pythia cross section calculation.

Background samples normalization

For the normalization of background samples ($c\bar{c}$ and $b\bar{b}$) we used generator cuts efficiencies and corrected the nominal cross section accordingly:

$$\mathcal{L} = \frac{N_{MC}}{\varepsilon_{acc} \times \varepsilon_{gen} \times \sigma_{LHCb}}$$

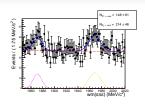
The obtained luminosities(per 1M events):

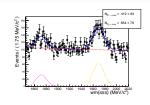

- 2 $\mathcal{L}_{bb} = 1.20 \pm 0.15 pb^{-1}$

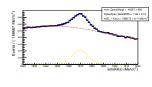
Dominant uncertainty from the cross section.

$$D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu$$

- The dominant background source of peaking background in this analysis is $D_s \to \eta(\mu\mu\gamma)\mu\nu$
- In 2011 we suffered from lack of MC statistics.
- Thanks to generator cuts our pdfs became more stable.





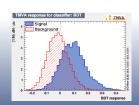


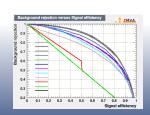
$D \rightarrow \mathsf{hhh}$

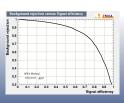
In 2011 we saw a triple miss-ID background: $D^+ \to K\pi\pi$. Luckily this background was in trash-bins that were not used in the analysis.

• 2011 data

• 2012 data

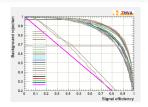

2012 data


In 2012 there is still no significant amount of triple mis-ID background in the bins important to the analysis.

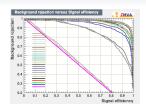


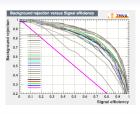
Isolating parameters

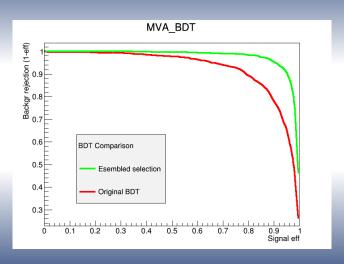
- In 2011 we used the isolation parameter developed for $B^0_s \to \mu\mu$. For 2012 data we optimised the isolation parameter for our channel based on MVA(BDT).
- We follow two approaches: train a MVA on signal vs. bkg tracks, and the isolating vs. non-isolating tracks.
- 3 We see big improvement compared to old isolation.



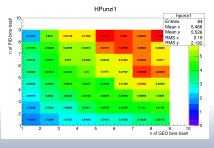
Ensemble Selection

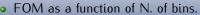

- In the last few years people winning leading machine learning contests started to combine their classifiers to squeeze the best out of them.
- This technique/method is know as Ensemble Selection or Blending.
- **3** The plan for $\tau \to \mu \mu \mu$ is to take it to the next level.
- ① Combine not only different signal sources, but also different τ sources(slide 4).
- 3 Allows for usage different isolating parameters for each channel.

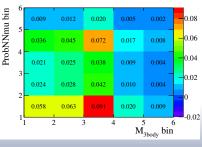

Ensemble Selection



•
$$B \rightarrow D_s \rightarrow \tau$$


Ensemble Selection





Binning optimisation

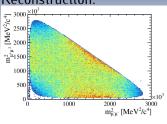
For the 2011 analysis we had two classifiers: *PIDNN* and M_{GEO} . Each of them we optimised separately. For the 2012 analysis we are performing a simultaneous 2D optimisation.

• Signal efficiency in 2011 binning.

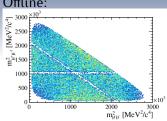
Model dependence

Minimal Lepton Flavour Violation Model^a

^aarXiv:0707.0988


- In effective-field-theory we introduce new operators that at electro-weak scale are compatible with $SU(2)_L \times U(1)$.
- Left handed lepton doublets add right handed lepton singlets follow the group symmetry: $G_{LF} = SU(3)_L \times SU(3)_E$.
- LFV arises from breaking this group.
- We focus on three operators that have dominant contribution to NP:
 - ① Purely left handed iterations: $(\overline{L}\gamma_{\mu}L)(\overline{L}\gamma^{\mu}L)$

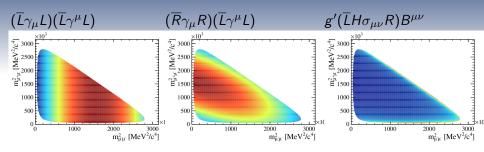
 - **3** Radiative operator: $g'(\overline{L}H\sigma_{\mu\nu}R)B^{\mu\nu}$



Reweighting MC samples

Reconstruction:

Offline:



$$\epsilon_{\text{gen\&rec}} = C \epsilon_{\text{gen\&rec}}^{\text{LHCbMC}} \sum \rho^{\text{model}}(m_{12}, m_{23})$$
 (1)

- Simulated signal events with PHSP
- Take into account reconstruction and selection.
- Reweigh accordingly to a given distribution.

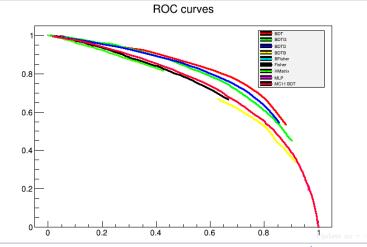
Reweighting MC samples

$$\epsilon_{\text{gen\&rec}} = C \epsilon_{\text{gen\&rec}}^{\text{LHCbMC}} \sum_{\rho} \rho^{\text{model}}(m_{12}, m_{23})$$
 (1)

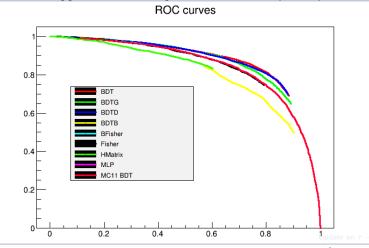
- Simulated signal events with PHSP
- Take into account reconstruction and selection.
- Reweigh accordingly to a given distribution.

Conclusions

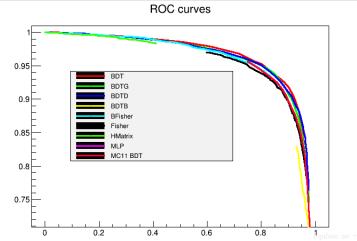
- Analysis is well underway.
- More efficient use of computing resources and increased MC statistics helps at all ends
- Mope to improve the selection.



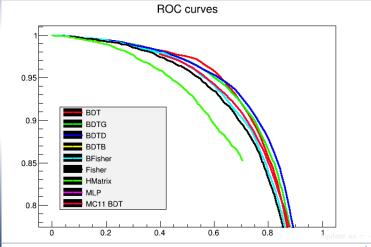
BACKUP


$$B \to \tau$$

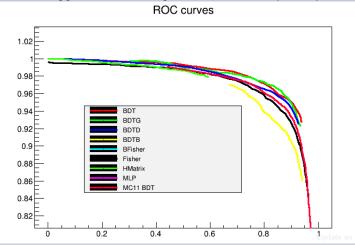
We really suck in selecting this channel.



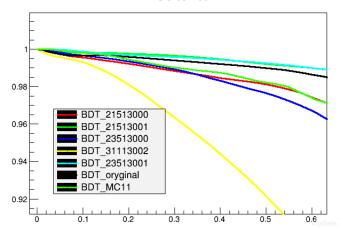
$$B o D_s o au$$



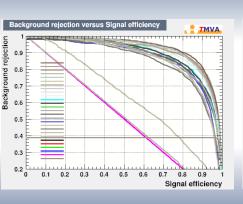
$$D_s \to \tau$$

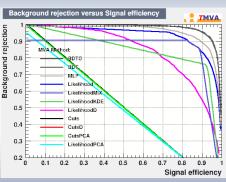


$$B \to D^+ \to \tau$$


$$D^+ \to \tau$$

Comparison on mix sample


Conclusions on TMVA


- Each of the signal components is enormously larger than MVA trained on mix.
- Method looks very promising if we can find a nice blending method(work for next week).
- Mayby discusion on TMVA/MatrixNet/Neurobayes is next to leading order effect compared to this method?

Comparison on mix sample

