Rare decays @ LHCb

Marcin Chrząszcz

Institute of Nuclear Physics, Polish Academy of Science, on behalf of LHCb collaboration

7th January 2013

Overwiew of LHCbs rare decays

Lepton Number Violation

$${f B}^- o {m h}^+ \mu^- \mu^-
onumber {m B}^- o {m D}^0 \pi^+ \mu^- \mu^-$$

τ decays

$$\begin{array}{l} \tau^- \rightarrow \mu^- \mu^- \mu^+ \\ \tau^- \rightarrow \overline{\mathbf{p}} \mu^- \mu^+ \text{, } \tau^- \rightarrow \mathbf{p} \mu^- \mu^- \end{array}$$

Higgs Penguins

$$\begin{array}{l} \mathbf{K}^{\mathbf{S}}_{\mathbf{S}} \rightarrow \mu\mu \\ \mathbf{D}^{\mathbf{0}} \rightarrow \mu\mu \\ \mathbf{B}^{\mathbf{0}}_{\mathbf{s}} \rightarrow \mu\mu, \ \mathbf{B}^{\mathbf{0}} \rightarrow \mu\mu \end{array}$$

LHCbs rare decays

1 Lepton Flavour Lepton/Byron Number Violating B, τ decays. 2 Precision tests of Higgs penguins.

• Purely leptonic B, D, K decays.

3 Radiative decays.

• CP asymmetry in ${
m B^0}
ightarrow {
m K^*} \gamma$

4) New Vector or Axial couplings in EW Penguins

- Angular analysis and CP asymmetry in $b \rightarrow s \mu \mu$ transitions.
- Isospin asymetry in $b
 ightarrow s \mu \mu$ transitions.
- First observation of $b \rightarrow d\mu\mu$ transition.

Discussed decays

1) Lepton Flavour Lepton/Baryon Number Violating B, τ decays. 2) Precision tests of Higgs penguins.

• Purely leptonic B, D, K decays.

3 Radiative decays.

• CP asymmetry in ${
m B^0}
ightarrow {
m K^*} \gamma$

4) New Vector or Axial couplings in EW Penguins

- Angular analysis and CP asymmetry in $b
 ightarrow s\mu\mu$ transitions.
- Isospin asymmetry in $b
 ightarrow s \mu \mu$ transitions.
- First observation of $b \rightarrow d\mu\mu$ transition.

${ m B}^- ightarrow {\it h}^+ \ell^- \ell^-$

M.Chrząszcz 2013

Rare decays @ LHCb

${f B}^- o h^+ \mu^- \mu^-$

- resonant production in accessible mass range
- rates depend on Majorana neutrino–lepton coupling |V_{μ4}| (e.g. arXiv:0901.3589)
- $m_4 = m_{\ell^-,\pi^+}$

Special for B decays

Diagram without mass restriction Cabbibo favoured for $B \rightarrow D$ Analogous to double β decay.

Implications on Majorana mass

mass spectrum

Determine limit as function of $h^+\mu^-$ mass

Phys. Rev.D85 (2012)

112004

M.Chrząszcz 2013

5 / 26

${ m B}^- ightarrow { m D}^0 \pi^+ \mu^- \mu^-$

- Four body B decay complementary to three body decay (arXiv:1108.6009)
- $m_4 = m(\pi^+ \mu^-)$
- + enhanced by W couplings
- smaller mass range accessible (260 MeV $< m_4 < 3.3$ GeV)
- first performed at LHCb

 ${f B}^- o {f D}^0 \pi^+ \mu^- \mu^-$

 ${\cal B}({
m B}^- o {
m D}^0 \pi^+ \mu^- \mu^-) < 1.5 imes 10^{-6}$ @95 % CL a

^aLHCb, CERN-PH-EP-2012-006, arXiv:1201.5600

Rare decays @ LHCb

7/26

Summary on LNV in B decays

channel	limit		
${\cal B}({ m B}^- o\pi^+{ m e}^-{ m e}^-)$	$< 2.3 imes 10^{-8}$	@90 % CL	🧃 a
${\cal B}({ m B}^- ightarrow{ m K}^+{ m e}^-{ m e}^-)$	$<$ 3.0 $ imes$ 10 $^{-8}$	@90 % CL	🤹 a
${\cal B}({ m B}^- ightarrow{ m K}^{*+}{ m e}^-{ m e}^-)$	$<$ 2.8 $ imes$ 10 $^{-6}$	@90 % CL	ōŞb
${\cal B}({ m B}^- o ho^+{ m e}^-{ m e}^-)$	$<$ 2.6 $ imes$ 10 $^{-6}$	@90 % CL	öð₿ ^b
${\cal B}({ m B}^- ightarrow{ m D}^+{ m e}^-{ m e}^-)$	$<$ 2.6 $ imes$ 10 $^{-6}$	@90 % CL	<mark>≇</mark> ℃
${\cal B}({ m B}^- ightarrow{ m D}^+{ m e}^-\mu^-)$	$<$ 1.8 $ imes$ 10 $^{-6}$	@90 % CL	<mark>З</mark> С
${\cal B}({ m B}^- o\pi^+\mu^-\mu^-)$	$< 1.3 imes 10^{-8}$	@95 % CL	ellep d
${\cal B}({ m B}^- ightarrow{ m K}^+\mu^-\mu^-)$	$<$ 5.4 $ imes$ 10 $^{-7}$	@95 % CL	Rich e
${\cal B}({ m B}^- ightarrow{ m D}^+\mu^-\mu^-)$	$<$ 6.9 $ imes$ 10 $^{-7}$	@95 % CL	ricp d
${\cal B}({ m B}^- ightarrow{ m D}^{*+}\mu^-\mu^-)$	$<$ 2.4 $ imes$ 10 $^{-6}$	@95 % CL	ruch d
${\cal B}(\mathrm{B}^- o \mathrm{D_s}^+ \mu^- \mu^-)$	$<$ 5.8 $ imes$ 10 $^{-7}$	@95 % CL	ricp d
${\cal B}(\mathrm{B}^- o \mathrm{D}^0 \pi^- \mu^- \mu^-)$	$< 1.5 imes 10^{-6}$	@95 % CL	Hich d

^aBaBar,Phys. Rev. D **85**, 071103 (2012) ^bCLEO, Phys. Rev. D **65**, 111102 (2002) ^cBelle, Phys. Rev. D **84**, 071106(R), (2011) ^dLHCb, CERN-PH-EP-2012-006, arXiv:1201.5600 (2012) ^eLHCb, Phys. Rev. Lett. 108 101601 (2012)

Rare decays @ LHCb

Lepton Number Violation

τ decays

$$\begin{array}{c} (1) \ \tau^- \to \mu^- \mu^- \mu^+ \\ (2) \ \tau^- \to \overline{p} \mu^- \mu^+, \ \tau^- \to p \mu^- \mu^- \end{array}$$

M.Chrząszcz 2013

Rare decays @ LHCb

LFV in au^- sector

M.Chrząszcz 2013

10 / 26

LFV in τ^- sector

1 In SM small
$$\mathcal{B}(\tau^- \to \mu^- \mu^- \mu^+) \sim 10^{-50}$$

2 NP can enhance \mathcal{B} .
3 Nature still hides $\tau^- \to \mu^- \mu^- \mu^+$ from us.

(4) Current limits:

Experiment	90% CL limit
BaBar	$3.3 imes10^{-8}$
Belle	$2.1 imes 10^{-8}$

(5) Can a hadron collider change the picture?

Strategy

- Loose cut based selection
- Classification in 3D space:
 - invariant mass
 - decay topology (multivariate)
 - particle identification (multivariate)
- Classifier trained on simulation
- Calibration with control channel
- Normalization with $D_{\rm s}
 ightarrow \phi(\mu\mu)\pi$
- CLs method to extract the result

Signal likelihoods

combined signal distribution

- events distributed over 25 likelihood bins
- background estimate from mass sidebands

Signal efficiency in 3-BODY BDT vs PID BDT plane.

- 11 % signal efficiency
- 21 % signal efficiency
- for illustration: high likelihood range shown

M.Chrząszcz 2013

Rare decays @ LHCb

Observed events

Extracted upper limit

	observed	expected	CL
$\mathcal{B}(au o \mu \mu \mu)$	$6.3 imes 10^{-8}$	$8.2 imes 10^{-8}$	90%
	$7.8 imes 10^{-8}$	$9.9 imes10^{-8}$	95%

LNV & BNV in au^- sector

$$\tau^- \to \overline{p}\mu^-\mu^+$$

 $\tau^- \to p\mu^-\mu^-$

(1) Search for baryon number violation processes so far unsuccessful, but must have occurred in the early universe

(2) Decay fall into |B - L| = 0 category, which is predicted by many NP models.

(3) Similar decays $\tau^- \rightarrow \Lambda h^-$, previous studied in \mathcal{B} factories.

(4) Two possible decay and new physics modes: $\tau^- \rightarrow \overline{p} \mu^- \mu^+$,

 $\tau^- \rightarrow p\mu^-\mu^-$.

(5) Analysis adopted from $au^-
ightarrow \mu^- \mu^- \mu^+$

Limits on $\tau^- \rightarrow \overline{p}\mu^-\mu^+$ and $\tau^- \rightarrow p\mu^-\mu^-$

First time measured!!

Purelly leptonic decay

${ m K_S^0} ightarrow \mu \mu$

- $\mathcal{B}(K^0_S o \mu \mu)_{SM} = (5.0 \pm 1.5) \times 10^{-12}$
- Good mass resolution enables to separate $K^0_S \rightarrow \pi \pi$ MisID peak.
- Previous limit $\mathcal{B} < 3.2 \times 10^{-7}$, PLB44 (1973) 217.
- BDT used, trained and callibrated on data.
- Background estimated from upper side bands.
- Normalization $K_S^0 \rightarrow \pi \pi$.
- New LIMIT: B < 9 × 10⁻⁹

arXiv:1209.4029

470 480 490 Rare decays @ LHCb

Candidates / (1 MeV/c2

35 E

30 25

20

10

Higgs Penguins

18 / 26

${f D}^0 o \mu \mu$

- BDT used, Good separation between c and b decays.
- Background estimated from upper side bands.
- Normalization $D^0 \rightarrow \pi\pi$, CLs method for the limit.
- 2D fit to $m(D^0)$ and $m(D^{0*} D^0)$
- Limit: 1.3 × 10⁻⁸ 90% CL.

0.9 fb⁻¹ LHCb-CONF -2012-005

A 25 year journey

ABSTRACT. Using the ARGUS detector at the e^+e^- storage ring DORIS II, we have studied the colour-suppressed decays $B \to J/\psi X$ and $B \to \psi' X$. We find the inclusive branching ratios for these two channels to be $(1.07 \pm 0.16 \pm$ 0.19)% and $(0.46 \pm 0.17 \pm 0.11)\%$ respectively. From a sample of reconstructed exclusive events the masses of the B^0 and B^+ mesons are determined to be $(5279.5 \pm 1.6 \pm 3.0) \ MeV/c^2$ and $(5278.5 \pm 1.8 \pm 3.0) \ MeV/c^2$ respectively. Branching ratios are determined from five events of the type $B^0 \to J/\psi K^{*0}$ and three of $B^+ \to J/\psi K^+$. In the same data sample a search for $B^0 \to e^+e^-$, $\mu^+\mu^-$ and $\mu^\pm e^\mp$ leads to upper limits for such decays.

Table 2 Upper limits for exclusive dilepton decays.		
decay channel	upper limit with 90% CL	
$B^0 \rightarrow e^+e^-$	85.10-5	
$B^0 ightarrow \mu^+ \mu^-$	$5.0 \cdot 10^{-5}$	
$B^0 \rightarrow e^{\pm} \mu^+$	5.0 10-3	

Datasets

- Analyses done using 2011 and 2012 data.
 - 2011: 1.0*fb*⁻¹ at 7 TeV
 - 2012: 1.1*fb*⁻¹ at 8 TeV
- Previous analyses done with 2011 data only.
- 3 Published PRL108(2012)231801
- 4 Results:
 - $\mathcal{B}(\mathrm{B}^0_{\mathrm{s}}
 ightarrow \mu\mu) = 4.9 imes 10^{-9}$
 - $\mathcal{B}(B^0 \rightarrow \mu\mu) = 1.0 \times 10^{-10}$
- 6 New analysis implements improvements.

Analysis I

Selection

- Loose selection, for reducing data size.
- Similar for control channels.

2 Normalization

- Makes result more stable.
- Channels: $B \rightarrow j/\psi K$ and $B \rightarrow hh$
- 3 Signal likelihoods
 - Same as for 2011 analysis.
- Invariant mass resolutions:
 - $\sigma(\mathrm{B_s^0}
 ightarrow \mu\mu) = 25.04 \pm 0.4$
 - $\sigma(\mathrm{B}^0
 ightarrow \mu\mu) =$ 24.63 \pm 0.38
 - comparable to 2011.

- Callibration channel & yield.
- Main bck $bb \rightarrow \mu \mu \gamma$
- Number of expected bck
 extrapolated from sidebands.
- Improved description of peaking background.

Peaking background

- Improvement of combinatorial background interpolation by inclusion of exclusive decays in the fit.
 - Only $B_s^0 \rightarrow hh$ in the mass window (same as 2011).
 - Mass shapes different from exponential
 - $B^0 \rightarrow \pi \mu \nu$

•
$$B^+ \rightarrow \pi^+ \mu \mu$$
, $B^0 \rightarrow \pi^0 \mu \mu$

- Negligible contribution to signal window.
- Exclusive backgrounds parameters used in fit as priors.
 - Mass shape from MC
 - Normalized to $B^+
 ightarrow J/\psi K^+$

Results

• RESULT:

 $\mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} o \mu\mu) = 3.2^{+1.5}_{-1.2} imes 10^{-9} \ \mathcal{B}(\mathrm{B}^{0} o \mu\mu) < 9.4 imes 10^{-10}$

SM predictions:

$$\begin{split} \mathcal{B}(B^0_s \to \mu\mu) &= 3.54 \pm 0.3 \times 10^{-9} \\ \text{Buras, Isidori: arXiv:1208.0934} \\ \mathcal{B}(B^0 \to \mu\mu) &= 0.1 \pm 0.01 \times 10^{-9} \\ \text{Buras, Isidori: arXiv:1012.1447} \end{split}$$

- 3.5σ significance.
- Double sided limit 95% CL. $1.1\times 10^{-9} < \mathcal{B}(B^0_s \to \mu\mu) < 6.4\times 10^{-9}$
- FIRST EVIDENCE OF SIGNAL

arXiv:1211.2674

Summary

2) 3

1) Worlds best limits for ${
m B}^0 o \mu\mu,\, {
m D}^0 o \mu\mu,\, {
m K}^0_{
m S} o \mu\mu$

) Strongest constrains Majorana neutrino coupling.

) First searches for LFV in hadron coliders.

- 4) First search for $\mathcal{B}(au o \mathrm{p}\mu\mu)$.
- 5) First Evidence of $B_s^0 \rightarrow \mu\mu$, after 25 years of search.
- 5 Stay tuned for new results!

Thank you for your attention.

Work partially funded by the Polish Ministry of Science and Higher Education under the "Diamond Grant"

Rare decays @ LHCb

Backup Slides

M.Chrząszcz 2013

Rare decays @ LHCb

Higgs Penguins

26 / 26