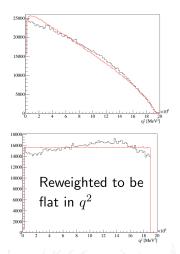


$B^0 ightarrow K^* \mu^- \mu^+$ EvtGen Model

Marcin Chrząszcz mchrzasz@cern.ch Thomas Blake thomas.blake@cern.ch

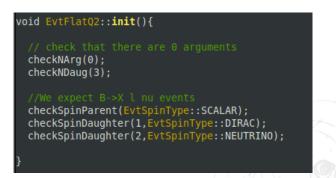

MC meeting, CERN November 8, 2016

Acceptance correction

⇒ The decay of $B^0 \rightarrow K^* \mu^- \mu^+$ is described by 3 helicity angles and the invariant mass squared of two leptons (q^2) .

 \Rightarrow In order to model the detector acceptance we have used a large MC sample of PHSP simulated events.

- \Rightarrow There is a caveat: the q^2 distribution.
- \Rightarrow We had to reweight it to make it flat.

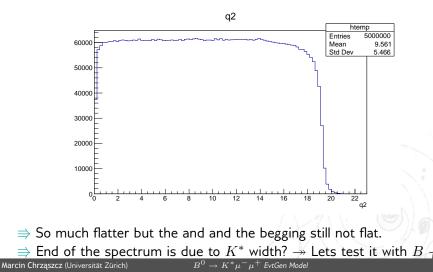


Can we optimize it?

 \Rightarrow It would be nice if we could generate not only the flat angle distributions but also a flat q^2 .

- \Rightarrow There exists already a model for it: FLATQ2.
- \Rightarrow It basically reweighs the distribution by $1/p_T^{had}$.

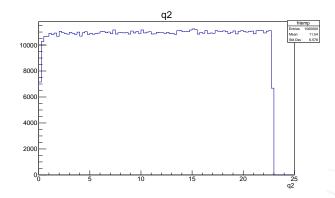
 \Rightarrow The problem is that it was design to generate the flat distribution of decays $B \to X \ell \nu$:



 \Rightarrow Will not work in current version for $B \rightarrow K^* \mu \mu$.

Modifying the FLATQ21

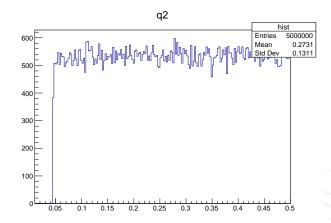
 \Rightarrow I wrote a mirror model that requires that the two leptons are DIRAC, and called it FLATQ2EWP.


 \Rightarrow And improves the situation a lot:

/ 8

Modifying the FLATQ21

 \Rightarrow FLATQ2EWP use to simulate the $B \rightarrow K \mu \mu$:


 \Rightarrow Oki so end of the spectrum is understood and not much can be done there.

 \Rightarrow Now the low q^2 : Can this be just Phase space suppression: $\sqrt{1-4m_\ell^2/q^2}$

Marcin Chrząszcz (Universität Zürich)

Modifying the FLATQ2 2

 \Rightarrow FLATQ2EWP with phase space suppression factor.

 \Rightarrow Now it's perfect.

Update since last week

 \Rightarrow Discussion was made via: JIRA

 \Rightarrow It was suggested my Michal to incorporate the new model into the current one to save the code.

 \Rightarrow Thanks to John for merging the two codes:

```
void EvtFlat02::init(){
 // check that there are 3 daughters
 checkNDaug(3);
 // We expect B -> X lepton lepton events
 checkSpinParent(EvtSpinTvpe::SCALAR):
 EvtSpinType::spintype d1type = EvtPDL::getSpinType(getDaug(1));
 EvtSpinTvpe::spintvpe d2tvpe = EvtPDL::getSpinTvpe(getDaug(2));
 if (!(ditype == EvtSpinType::DIRAC || ditype == EvtSpinType::NEUTRINO)) {
     EvtGenReport(EVTGEN ERROR, "EvtGen") << "EvtFlat02 expects 2nd daughter to "
                                          << "be a lepton" <<std::endl:
     EvtGenReport(EVTGEN ERROR."EvtGen") << "Will terminate execution!"<<std::endl:</pre>
     ::abort():
 3
 if (!(d2type == EvtSpinType::DIRAC || d2type == EvtSpinType::NEUTRINO)) {
     EvtGenReport(EVTGEN ERROR, "EvtGen") << "EvtFlat02 expects 3rd daughter to "
                                          << "be a lepton" <<std::endl:
     EvtGenReport(EVTGEN ERROR."EvtGen") << "Will terminate execution!"<<std::endl:</pre>
     ::abort():
 }
 // Specify if we want to use the phase space factor
 usePhsp = false;
 if (getNArg() > 0)
     if (getArg(0) != 0) { usePhsp = true;}
 EvtGenReport(EVTGEN INFO,"EvtGen") <<"EvtFlat02 usePhsp = "<<int( usePhsp)<<std::endl;</pre>
```

Marcin Chrząszcz (Universität Zürich)

Update since last week

 \Rightarrow Discussion was made via: JIRA

 \Rightarrow It was suggested my Michal to incorporate the new model into the current one to save the code.

 \Rightarrow Thanks to John for merging the two codes:

```
void EvtFlat02::decay( EvtParticle *p){
  p->initializePhaseSpace(getNDaug().getDaugs());
  EvtVector4R p4Xu = p->getDaug(0)->getP4();
  EvtVector4R p4ell1 = p->getDaug(1)->getP4();
  EvtVector4R p4ell2 = p->getDaug(2)->getP4():
  double pXu x2 = p4Xu.get(1)*p4Xu.get(1):
  double pXu_y2 = p4Xu.get(2)*p4Xu.get(2);
  double pXu z2 = p4Xu.get(3)*p4Xu.get(3);
  double pXu = sqrt(pXu x2+pXu y2+pXu z2);
  double prob(0.0):
  if (fabs(pXu) > 0.0) {prob = 1/pXu;}
  // Include the phase space factor if requested
  if ( usePhsp) {
    double Lambda = lambda((p4ell1+p4ell2).mass(), p4ell1.mass());
   if (Lambda > 0.0) {prob=prob/sgrt(Lambda):}
  if (pXu > 0.01) {setProb(prob);}
```

FLATQ2 Conclusion

- \Rightarrow The new model was tested by me and John.
- \Rightarrow Changes won't have any influence on the existing DEFILES as the flag is by default switched off.
- \Rightarrow The commit was mearge to master by Gloria today.
- \Rightarrow We thank all people involved action

Backup