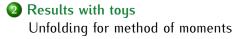
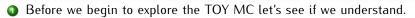
Toy MC Results


Marcin Chrzaszcz^{1,2}, Nicola Serra¹

April 16, 2014

¹ University of Zurich, ² Institute of Nuclear Physics



- O To X-Check:
 - **2** Check EOS SM parameters.
 - Oheck unfolding.
- Test various methods with data bins and statistics

- Take the full MC(without acceptance) and fit + count events.
- See if the results are consistent.
- Here we just fit signal(bkgcat==0)
- In yellow > 3 σ fluctuations, red > 5 σ fluctuations,

q ²	S ₄ ^{true} S ₄ ^{fit}		S ₄ ^{fold}	S ₄ ^{MM}	
[0.1, 1.0]	-0.0884	$-0.0869 \pm 0.0009(1.6)$	$-0.0874 \pm 0.0010(1.0)$	$-0.0873 \pm 0.0010(1.1)$	
[1.1, 2.0]	-0.0481	$-0.0447 \pm 0.0015(2.3)$	$-0.0462 \pm 0.0017(1.1)$	$-0.0477 \pm 0.0018(0.2)$	
[2.0, 3.0]	0.0480	$0.0465 \pm 0.0015(1.0)$	$0.0476 \pm 0.0016(0.25)$	$0.0478 \pm 0.0019(0.1)$	
[3.0, 4.0]	0.1255	$0.1229 \pm 0.0014(1.9)$	$0.1253 \pm 0.0016(0.1)$	$0.1262 \pm 0.0019(0.4)$	
[4.0, 5.0]	0.1765	$0.1731 \pm 0.0013(2.6)$	$0.1742 \pm 0.0015(1.5)$	$0.1760 \pm 0.0018(0.3)$	
[5.0, 6.0]	0.2089	$0.2058 \pm 0.0012(2.3)$	$0.2065 \pm 0.0015(1.6)$	$0.2081 \pm 0.0017(0.9)$	
[6.0, 7.0]	0.2295	$0.2279 \pm 0.0011(1.5)$	$0.2283 \pm 0.0014(0.9)$	$0.2313 \pm 0.0016(1.1)$	
[7.0, 8.0]	0.2609	$0.2422 \pm 0.0010(18.7)$	$0.2428 \pm 0.0014(13)$	$0.2441 \pm 0.0016(10.5)$	
[15.0, 16.0]	0.2822	$0.2820 \pm 0.0008(0.3)$	$0.2817 \pm 0.0012(0.4)$	$0.2819 \pm 0.0014(0.2)$	
[16.0, 17.0]	0.2888	$0.2884 \pm 0.0008(0.5)$	$0.2878 \pm 0.0013(0.8)$	$0.2890 \pm 0.0015(0.1)$	
[17.0, 18.0]	0.2987	$0.2991 \pm 0.0008(0.5)$	$0.2987 \pm 0.0013(0.0)$	$0.2980 \pm 0.0016(0.4)$	
[18.0, 19.0]	0.3139	$0.3152 \pm 0.0011(1.2)$	$0.3150 \pm 0.0015(0.7)$	$0.3156 \pm 0.0020(0.85)$	

q ²	S_5^{true}	S_5^{fit}	S ₅ ^{fold}	S_5^{MM}	
[0.1, 1.0]	0.2253	$0.2238 \pm 0.0008(1.9)$	$0.2253 \pm 0.0009(0.0)$	$0.2260 \pm 0.0009(0.8)$	
[1.1, 2.0]	0.1652	$0.1673 \pm 0.0016(1.3)$	$0.1674 \pm 0.0016(1.4)$	$0.1671 \pm 0.0018(1.1)$	
[2.0, 3.0]	-0.0287	$-0.0298 \pm 0.0016(0.7)$	$-0.0301 \pm 0.0017(0.8)$	$-0.0300 \pm 0.0019(0.7)$	
[3.0, 4.0]	-0.1897	$-0.1911 \pm 0.0015(0.9)$	$-0.1919 \pm 0.0016(1.4)$	$-0.1891 \pm 0.0019(0.3)$	
[4.0, 5.0]	-0.2969	$-0.2966 \pm 0.0014(0.2)$	$-0.2971 \pm 0.0015(0.1)$	$-0.2966 \pm 0.0018(0.3)$	
[5.0, 6.0]	-0.3654	$-0.3678 \pm 0.0013(1.8)$	$-0.3682 \pm 0.0014(2.0)$	$-0.3700 \pm 0.0017(2.7)$	
[6.0, 7.0]	-0.4084	$-0.4089 \pm 0.0012(0.4)$	$-0.4092 \pm 0.0013(0.6)$	$-0.4096 \pm 0.0016(0.8)$	
[7.0, 8.0]	-0.4113	$-0.4356 \pm 0.0010(24.3)$	$-0.4364 \pm 0.0012(21)$	$-0.4356 \pm 0.0015(16)$	
[15.0, 16.0]	-0.3654	$-0.3651 \pm 0.0008(0.6)$	$-0.3650 \pm 0.0011(0.4)$	$-0.3646 \pm 0.0012(0.3)$	
[16.0, 17.0]	-0.3356	$-0.3347 \pm 0.0008(1.1)$	$-0.3349 \pm 0.0011(0.6)$	$-0.3359 \pm 0.0013(0.2)$	
[17.0, 18.0]	-0.2911	$-0.2907 \pm 0.0009(0.4)$	$-0.2903 \pm 0.0013(0.6)$	$-0.2896 \pm 0.0014(1.1)$	
[18.0, 19.0]	-0.2124	$-0.2153 \pm 0.0012(2.4)$	$-0.2152 \pm 0.0016(1.8)$	$-0.2158 \pm 0.0018(1.9)$	

q ²	S ₇ ^{true}	S ₇ ^{fit}	S ₇ ^{fold}	S ₇ ^{MM}	
[0.1, 1.0]	0.0212	$0.0206 \pm 0.0009(0.7)$	$0.0214 \pm 0.0009(0.2)$	$0.0208 \pm 0.0009(0.4)$	
[1.1, 2.0]	0.0386	$0.0353 \pm 0.0016(2.1)$	$0.0352 \pm 0.0016(2.1)$	$0.0348 \pm 0.0018(2.1)$	
[2.0, 3.0]	0.0379	$0.0349 \pm 0.0016(1.6)$	$0.0351 \pm 0.0017(1.6)$	$0.0353 \pm 0.0019(1.4)$	
[3.0, 4.0]	0.0341	$0.0365 \pm 0.0016(0.5)$	$0.0368 \pm 0.0017(1.6)$	$0.0363 \pm 0.0019(1.2)$	
[4.0, 5.0]	0.0306	$0.0293 \pm 0.0016(0.8)$	$0.0293 \pm 0.0016(0.8)$	$0.0303 \pm 0.0018(0.6)$	
[5.0, 6.0]	0.0284	$0.0261 \pm 0.0015(1.5)$	$0.0262 \pm 0.0016(1.4)$	$0.0263 \pm 0.0018(1.2)$	
[6.0, 7.0]	0.0278	$0.0282 \pm 0.0014(0.3)$	$0.0286 \pm 0.0015(0.5)$	$0.0287 \pm 0.0017(0.5)$	
[7.0, 8.0]	0.0000	$0.0293 \pm 0.0014(20.9)$	$0.0290 \pm 0.0015(19.3)$	$0.0287 \pm 0.0016(18)$	
[15.0, 16.0]	0.0000	$-0.0024 \pm 0.0013(1.8)$	$-0.0007 \pm 0.0014(0.5)$	$-0.0008 \pm 0.0014(0.6)$	
[16.0, 17.0]	0.0000	$-0.0016 \pm 0.0014(1.1)$	$-0.0026 \pm 0.0015(1.6)$	$-0.0026 \pm 0.0015(1.7)$	
[17.0, 18.0]	0.0000	$-0.0021 \pm 0.0015(1.4)$	$-0.0023 \pm 0.0016(1.6)$	$-0.0021 \pm 0.0017(1.2)$	
[18.0, 19.0]	0.0000	$-0.0006 \pm 0.0019(0.3)$	$-0.0021 \pm 0.0021(1.0)$	$-0.0015 \pm 0.0021(0.6)$	

q ²	S ^{true}	S_8^{fit}	S ₈ ^{fold}	S ₈ ^{MM}
[0.1, 1.0]	-0.0038	$-0.0061 \pm 0.0010(2.3)$	$-0.0042 \pm 0.0010(0.4)$	$-0.0040 \pm 0.0010(0.2)$
[1.1, 2.0]	-0.0107	$-0.0133 \pm 0.0015(1.7)$	$-0.0142 \pm 0.0017(2.1)$	$-0.0135 \pm 0.0018(1.5)$
[2.0, 3.0]	-0.0123	$-0.0141 \pm 0.0015(1.2)$	$-0.0144 \pm 0.0017(1.2)$	$-0.0149 \pm 0.0019(0.3)$
[3.0, 4.0]	-0.0121	$-0.0109 \pm 0.0016(0.8)$	$-0.0112 \pm 0.0016(0.6)$	$-0.0117 \pm 0.0019(0.2)$
[4.0, 5.0]	-0.0114	$-0.0125 \pm 0.0015(0.8)$	$-0.0123 \pm 0.0016(0.6)$	$-0.0129 \pm 0.0018(0.8)$
[5.0, 6.0]	-0.0110	$-0.0115 \pm 0.0015(0.3)$	$-0.0118 \pm 0.0016(0.5)$	$-0.0115 \pm 0.0018(0.3)$
[6.0, 7.0]	-0.0110	$-0.0104 \pm 0.0014(0.4)$	$-0.0110 \pm 0.0016(0.0)$	$-0.0107 \pm 0.0017(0.2)$
[7.0, 8.0]	0.0007	$-0.0112 \pm 0.0013(8.1)$	$-0.0112 \pm 0.0015(7.0)$	$-0.0113 \pm 0.0016(6.6)$
[15.0, 16.0]	0.0003	$0.0006 \pm 0.0012(0.3)$	$-0.0015 \pm 0.0015(0.8)$	$-0.0016 \pm 0.0015(0.9)$
[16.0, 17.0]	0.0003	$-0.0023 \pm 0.0013(0.8)$	$-0.0020 \pm 0.0016(1.1)$	$-0.0022 \pm 0.0016(1.2)$
[17.0, 18.0]	0.0002	$0.0009 \pm 0.0015(0.5)$	$0.0023 \pm 0.0018(1.2)$	$0.0022 \pm 0.0018(1.1)$
[18.0, 19.0]	0.0002	$-0.0019 \pm 0.0019(0.9)$	$-0.0007 \pm 0.0022(0.2)$	$-0.0012 \pm -0.0022(0.5)$

• Following Einstein:

Debugging MC

A scientific person will never understand why he should believe opinions only because they are written in a certain book. Furthermore, he will never believe that the results of his own attempts are final.

- I start debugging my code.
- After several hours I said to Einstein to go to hell and start debugging EOS

lнсb

THCP WTH is going on with [7.0, 8.0] ? 1/3

- With those parameters from EOS the PDF is negative? i- checked , no
- Some boundary conditions? i- checked by simulating my toy, no thing going on there.
- The parametrs that EOS gives you are not the one they simulated? i- YES!

LHCb

THCP WTH is going on with [7.0, 8.0] ? 2/3

• First I simulated MY toy MC:

Listing 1: My unofficial MC:

FL_1 0.527066 +/- 0.000247033 FL_2 0.527066 +/- 0.000247033 FL_3 0.52083 +/- 0.00159866 FL_4 0.525139 +/- 0.000307114 13 -0.0246584 +/- 0.000335458 true value: -0.0248true value: 0.2609 14 0.261117 +/- 0.000364695 J5 -0.411436 +/- 0.000335284 true value: -0.4113J6s_1 -0.411211 +/- 0.000281637 true value: -0.411317 -0.000505415 +/- 0.000363604 true value: O 18 - 0.000673747 + 0.000377374true value: -0.0007 19 0.000422372 +/true value: -0.00070.00033566

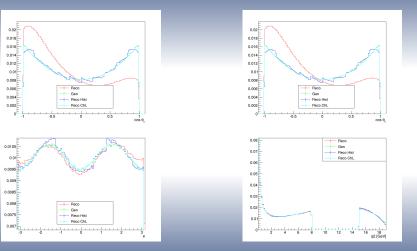
PDF is fine, can be fitted(here MM).

WTH is going on with [7.0, 8.0] ? 3/3

• Let's say if the predictions are internally consistent!

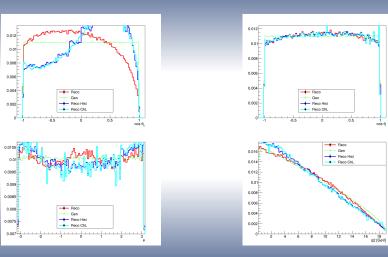
Listing 2: TABLE from email:

Q2	Q	2	S4	9	55		S7
7.00	7.10	0.2375	-0.4250	-0.2818	0.0282	-0.0113	
7.10	7.20	0.2388	-0.4275	-0.2890	0.0284	-0.0114	
7.20	7.30	0.2399	-0.4299	-0.2960	0.0286	-0.0115	
7.30	7.40	0.2411	-0.4321	-0.3030	0.0288	-0.0116	
7.40	7.50	0.2422	-0.4343	-0.3098	0.0291	-0.0117	
7.50	7.60	0.2432	-0.4363	-0.3165	0.0294	-0.0118	
7.60	7.70	0.2442	-0.4383	-0.3230	0.0297	-0.0120	
7.70	7.80	0.2451	-0.4401	-0.3295	0.0301	-0.0121	
7.80	7.90	0.2460	-0.4418	-0.3358	0.0305	-0.0123	
7.90	8.00	0.2623	-0.4199	-0.4330	0.0000	-0.0006	
Full	Bin:						
7.00	8.00	0.2609	-0.4113	-0.4113	0.0000	-0.0007	



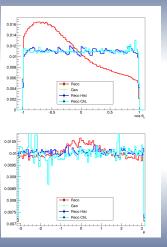
- EOS gives wrong prediction to the last bin before *cc* resonances region.
- Rest is consistent.

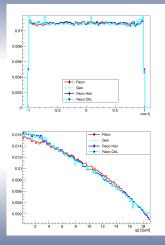
- Christoph also performed an unfolding.
- He parametrized the acceptance corrections using 7th order polynomials.
- Also made a check of this.
- On his official TOY MC
- Reweighed events($1/\epsilon$) to get back the true distribution.
- For details see Christoph's talk



Toy MC Results

- Official TOY MC internally is consistent.
- For sanity reasons, let's try the official MC.





Toy MC Results

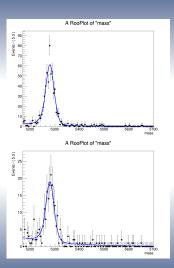
Magic happens when i don't require B⁰ trueID

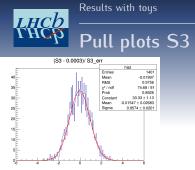
Toy MC Results 18 / 50

- MC was not truth matched for unfolding!
- Official TOY MC Internally is consistent but need to be careful for the future!

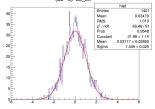
- Divide the big OFFICIAL TOY MC in bins of q^2 that have number of events the same as data.
- For each of them make fit and counting experiment.
- See errors and pulls.

- To estimate number of signal and background events we fit the events:
- For signal, I have assumed the PDF given by Christoph: LINK
- All parameters are for this pdf are fixed.
- For background I assume exponential, with free parameter.
- In summary the fit has 3 free parameters, n_{sig} , n_{bkg} , λ .
- Fit is done in region 5170, 5700 MeV.

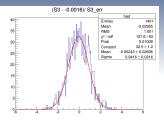

To get Signal moments(S_x) we do the following:

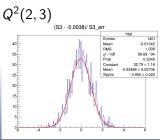

- Calculate background moments for *m* in (5350, 5700) *MeV*
- Calculate "mixed" moments for m in (5230, 5330) MeV
- Extract signal moments:

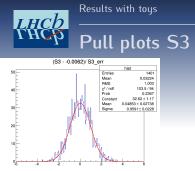
$$S_{sig} = rac{S_{mix}(n_{sig} + n_{bck})}{n_{sig}} - rac{n_{bck}S_{bck}}{n_{sig}}$$

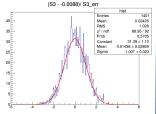


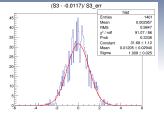
- All fits converged without any problem
- Got correlations Matrix.

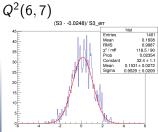


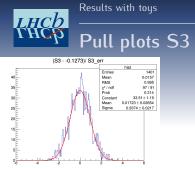


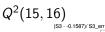




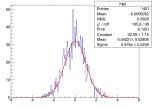


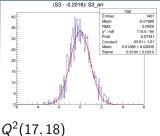

 $Q^{2}(3,4)$

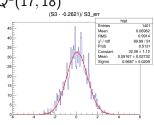




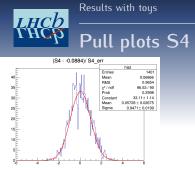
 $Q^2(5,6)$

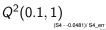

25 / 50

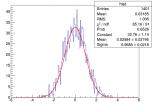

 $Q^2(7,8)$



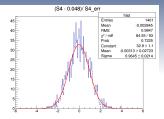
 $Q^2(16, 17)$

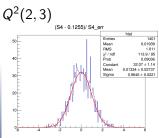


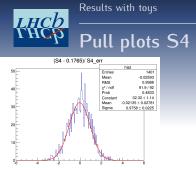


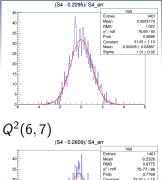


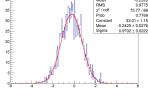
 $Q^2(18, 19)$


26 / 50

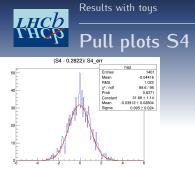



 $Q^2(1.1,2)$


Toy MC Results

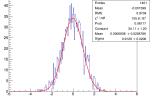

 $Q^2(3,4)$

(S4 - 0.2089)/ S4_err hist 1401 40 35 20 15 10 5 Entries Mean -0.02831 RMS 0.9779 χ² / ndf 76.08/90 Prob 0.8522 Constant 33.51±1.17 Mean -0.01773 ± 0.02695 Sigma 0.9538 ± 0.0219

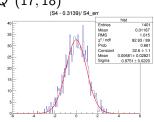


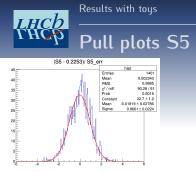
 $Q^2(5,6)$

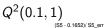
28 / 50

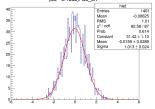

 $Q^2(7,8)$

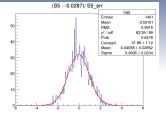
hist

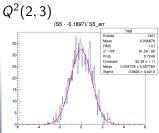


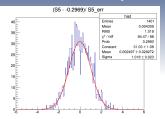

 $Q^2(16, 17)$

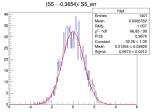


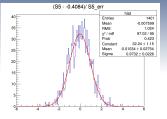


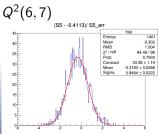


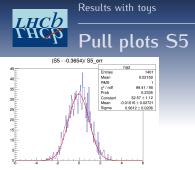

 $Q^2(18, 19)$

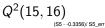


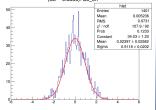

 $Q^{2}(3, 4)$

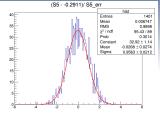

 $Q^2(1.1,2)$

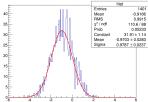

THCP Pull plots S5



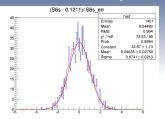


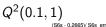

 $Q^2(7,8)$

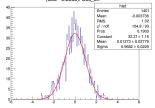

 $Q^{2}(5,6)$

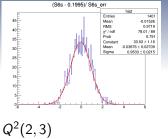


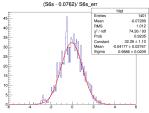
 $Q^2(16, 17)$



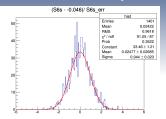


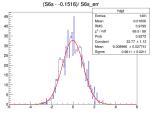

 $Q^2(18, 19)$

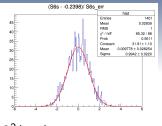

Pull plots S6

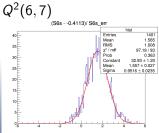


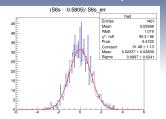
інсь

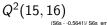





 $Q^{2}(3,4)$

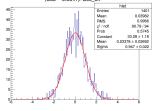

THCP Pull plots S6

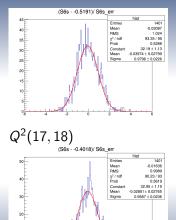




 $Q^2(7,8)$

 $Q^{2}(5,6)$


Pull plots S6

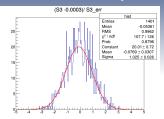


 $Q^2(16, 17)$

інср

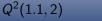
 $Q^2(18, 19)$

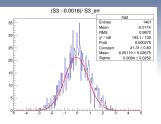
- Method of moments works perfectly with the TOY with our statistics.
- No bias seen in toys.

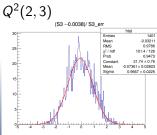


- The natural way of unfolding the method of moments is to reweigh events by $\frac{1}{\epsilon}$
- Similar to likelihood the normalization doesn't matter.
- Error is also calculated based on weights:

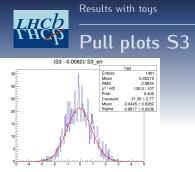
$$var = \frac{\sum_{i} w_i^2 \sigma_i}{(\sum_{i} w_i)^2} \tag{1}$$

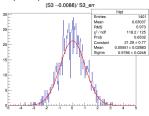

Results with toys

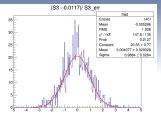

LHCb Heads with logs THCp Pull plots S3

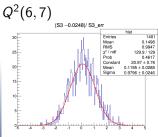


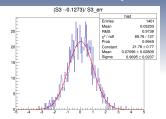
hist 1401 Entries 20 15 10 Mean -0.02235 RMS 0.9905 χ² / ndf 105.3 / 126 Prob 0.9097 Constant 20.98 ± 0.77 Mean -0.03348 ± 0.02911 Sigma 0.994 ± 0.026

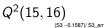



 $Q^{2}(3,4)$

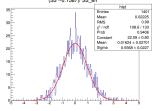

Toy MC Results

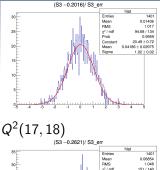

Results with toys





 $Q^2(7,8)$


Results with toys


LHCb Heads with logs THCp Pull plots S3

 $Q^2(16, 17)$

 $Q^2(18, 19)$

- Preliminary things look ok.
- However we plan to use a matrix method for unfolding \rightarrow smaller errors.

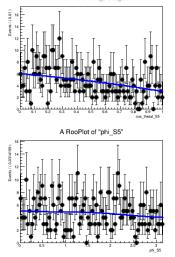
- Performed fit on folded data set.
- Signal PDFs are like in 2011.
- Background PDFs are 2nd order Chebyshev.
- PDF is parametrized:

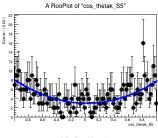
 $PDF = PDF_{sig}(\cos\theta_k, \cos\theta_l, \phi) \times PDF_{sigm}(m) + PDF_{bkg}(\cos\theta_k, \cos\theta_l, \phi) \times PDF_{bkgm}(m)$

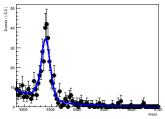
• Fit the angles and mass in the full region

- Performed fit on folded data set.
- Signal PDFs are like in 2011.
- Background PDFs are 2nd order Chebyshev.
- PDF is parametrized:

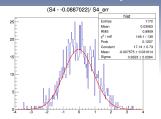
 $PDF = PDF_{sig}(\cos \theta_k, \cos \theta_l, \phi) \times PDF_{sigm}(m) + PDF_{bkg}(\cos \theta_k, \cos \theta_l, \phi) \times PDF_{bkgm}(m)$


• Fit the angles and mass in the full region

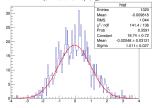


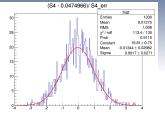

Examp

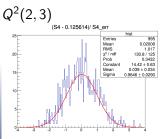
A RooPlot of "cos_thetal_S5"



A RooPlot of "mass"

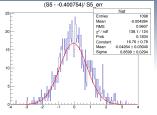


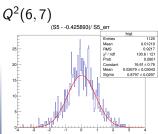

Toy MC Results 44 / 50


LHCD Filling logs THCD Pull plots S4

 $Q^2(0.1, 1)_{(S4 - 0.0475175)/S4 err}$

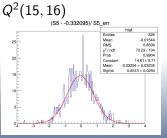



 $Q^{2}(3,4)$

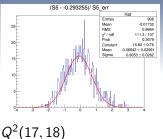

 $Q^2(1.1,2)$

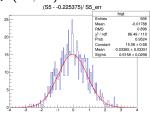
(S5 - -0.357589)/ S5 err hist 1145 Entries Mean -0.006129 25 RMS 0.9387 χ² / ndf 119.4 / 120 Prob 0.4975 15 Constant 17.56 ± 0.74 Mean 0.05151±0.03023 Sigma 0.9161 ± 0.0274





 $Q^2(7,8)$


 $Q^2(5,6)$


LHCD Pull plots S3

 $Q^2(16, 17)$

 $Q^2(18, 19)$

Toy MC Results 47 / 50

LHCD Conclusions of fitting

- Preliminary I see small bias, and error problems in the fits. To be x-checked.
- Need to check that unfolding doesn't do any harm.
- Hight fail rate! To be investigated.

LHCb

Error summary

q^2	$Err.S_5^{MM}$	$Err.S_5^{fit}$
0	0.047	0.044
1	0.093	0.079
2	0.097	0.080
3	0.099	0.080
4	0.092	0.072
5	0.091	0.069
6	0.087	0.063
7	0.074	0.053
8	0.071	0.058
9	0.072	0.061
10	0.067	0.072
11	0.088	0.094

- On average MM are 18% worse here(improvement from 25% reported by Christoph).
- Still errors do not have full systematics.
- One expects the difference to shrink even more.

Before the Easter:

- Do include unfolding inside the fits.
- Repeat all the fits without folding.
- Compare all numbers!