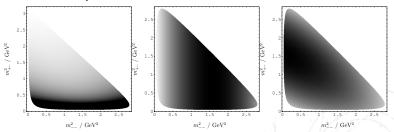
$au ightarrow 3 \mu$ in Magnet Stations

Marcin Chrząszcz mchrzasz@cern.ch

MC meeting, CERN August 5, 2016

au production


• τ 's in LHCb come from five main sources:

Mode	7 TeV	8 TeV
Prompt $D_s ightarrow au$	$71.1 \pm 3.0 \%$	$72.4 \pm 2.7 \%$
Prompt $D^+ ightarrow au$	$4.1 \pm 0.8 \%$	$4.2 \pm 0.7 \%$
Non-prompt $D_s ightarrow au$	$9.0 \pm 2.0 \%$	$8.5 \pm 1.7 \%$
Non-prompt $D^+ ightarrow au$	$0.18 \pm 0.04 \%$	$0.17 \pm 0.04 \%$
$X_b o au$	$15.5 \pm 2.7 \%$	$14.7 \pm 2.3 \%$

- \Rightarrow For this study I simulated the $\tau\text{'s}$ coming from c
- \Rightarrow For now limited statistics simulated ($\mathcal{O}(100)$).

Preliminary numbers

- \Rightarrow Magnet station efficiency: 2.01%.
- ⇒ Cross check:
- I have check and we have other particles form other events.
- Each event in other part of LHCb has the $au o 3\mu$ particles.
- ⇒ Other assumptions:
- \bullet au are decayed with PHSP.

Preliminary numbers

- \Rightarrow Magnet station efficiency: 2.01%.
- ⇒ Cross check:
- I have check and we have other particles form other events.
- Each event in other part of LHCb has the $au o 3\mu$ particles.
- ⇒ Further cross-checks:
- Simulate higher statistics.
- Add τ form b.
- Plot the τ momentum and see if this makes sense compared the π form D^* .

Backup