Lepton Flavour Violation at LHCb

 $\begin{array}{l} \mbox{Marcin Chrząszcz}^{1,2} \\ \mbox{on behalf of the LHCb collaboration} \end{array}$

 1 University of Zurich, 2 Institute of Nuclear Physics, Krakow

International Workshop on Tau Lepton Physics 2014, Aachen, Germany

December 1, 2015

Outline

Marcin Chrząszcz (UZH, IFJ)

Lepton Flavour Violation at LHCb

LHCb detector

LHCb is a forward spectrometer:

- Excellent vertex resolution.
- Efficient trigger.
- High acceptance for τ and B.
- Great Particle ID

Lepton Flavour/Number Violation

Lepton Flavour Violation(LFV):

After μ^- was discovered (1936) it was natural to think of it as an excited e⁻.

- Expected: $B(\mu
 ightarrow {
 m e}\gamma) pprox 10^{-4}$
- Unless another ν, in intermediate vector boson loop, cancels.

I.I.Rabi:

"Who ordered that?"

- Up to this day charged LFV is being searched for in various decay modes.
- LFV was already found in neutrino sector (oscillations).

Lepton Number Violation (LNV) (see J. Harrison talk)

- Even with LFV, lepton number can be a conserved quantity.
- Many NP models predict it violation(Majorana neutrinos)
- Searched in so called Neutrinoless double β decays.

Status of $\tau \rightarrow \mu \mu \mu$ in Tau 2012

- Blind analysis.
- Loose selection.
- Multivariate classification in: mass, PID(*M*_{PID}), geometry(*M*_{3body}).
- Binning optimisation.
- Consider 2012(8 TeV) and 2011(7 TeV) data separately.
- Relative normalisation $(D_s \rightarrow \phi(\mu\mu)\pi)$.
- Invariant mass fit for expected background in each likelihood bin: fit in $|m m_{\tau}| > 30$ MeV.
- "middle sidebands" for classifier evaluation and tests: (20 MeV $< |m m_{\tau}| < 30$ MeV).
- CLs for limit calculation.

τ production

• τ 's in LHCb come from five main sources:

Mode	7 TeV	8 TeV
Prompt $D_s \rightarrow \tau$	$71.1\pm3.0\%$	$72.4\pm2.7\%$
Prompt $D^+ ightarrow au$	$4.1\pm0.8\%$	$4.2\pm0.7~\%$
Non-prompt $D_s \rightarrow \tau$	$9.0\pm2.0\%$	$8.5\pm1.7~\%$
Non-prompt $D^+ \rightarrow \tau$	$0.18\pm0.04\%$	$0.17\pm0.04\%$
$X_{ m b} ightarrow au$	$15.5\pm2.7\%$	$14.7\pm2.3\%$

${\cal B}({\mathsf D}^+ o au)$

- There is no measurement of $\mathcal{B}(\mathsf{D}^+ \to \tau)$.
- One can calculate it from: $\mathcal{B}(D^+ \rightarrow \mu \nu_{\mu}) +$ helicity suppression + phase space.
- hep-ex:0604043.

•
$$\mathcal{B}(\mathsf{D}^+ o au
u_{ au}) = (1.0 \pm 0.1) imes 10^{-3}.$$

- LHCb uses complex trigger¹
- $\mathcal{O}(100)$ trigger lines.
- Lines change with data taking.
- Optimized choice of triggers based on $\frac{s}{\sqrt{b}}$ FOM.
- Evaluated different triggers used in 2012 data taking.
- Found negligible differences in trigger efficiencies.

¹arxiv 1211.3055

Marcin Chrząszcz (UZH, IFJ)

Geometric likelihood

- As mentioned in LHC we have different production sources of $\tau \, {\rm 's.}$
- Each source has different detector response signature.
- To maximise our performance we trained classifiers for each of the τ sources using:
 - Kinematic properties of τ candidate.
 - Geometric properties of τ candidate, like pointing angle, DOCA, Vertex χ^2 , flight distance.
 - Isolations, for vertex and individual tracks.
- After training the individual classifiers one that combines all this information in a single classifier on mixed sample of τ's.
- This technique is known as Blending or Ensemble learning.
- Using this approach we gain 6% sensitivity!

Performance of Blend classifier

• Classifier prefers τ 's from prompt D_s, the dominant channel.

Calibration

- Assume all differences between $\tau \rightarrow \mu \mu \mu$ and $D_s \rightarrow \phi \pi$ come from kinematics (mass, resonance, decay time), which is correct in MC.
- Get correction $D_s \rightsquigarrow \tau$ from MC.
- Apply corrections to $D_s \rightarrow \phi \pi$ on data.

• $D_s \rightarrow \phi \pi$ well modelled in MC.

- Classifier trained on inclusive MC sample.
- Using information from: RICH, Calorimeters, Muon system and tracking.
- Correct for the MC efficiency using control channel: $D_s \rightarrow \phi(\mu\mu)\pi$ and $B \rightarrow J/\psi(\mu\mu)K$

Binning optimisation

- Events are distributed among $\mathcal{M}_{3body}, \mathcal{M}_{PID}$ plane.
- In 2D we group the events in groups(bins)
- Bins are optimised using CL_s method.
- The lowest bins are rejected, because they do not contribute to the limit sensitivity.
- In rest of the bins a fit to mass side-bands is performed in order to estimate number of expected background in signal window.

Mass shape

- Double-Gaussian with fixed fraction (70% inner Gaussian).
- Fix fraction to ease calibration.
- Correct mass by MC:

$$\sigma_{\textit{data}}^{\tau} = \frac{\sigma_{\textit{MC}}^{'}}{\sigma_{\textit{MC}}^{\mathsf{D}_{\mathsf{s}}}} \times \sigma_{\textit{data}}^{\mathsf{D}_{\mathsf{s}}}$$

Relative normalisation

$$\mathcal{B}(\tau \to \mu \mu \mu) = \frac{\mathcal{B}(\mathsf{D}_{\mathsf{s}} \to \phi \pi)}{\mathcal{B}(\mathsf{D}_{\mathsf{s}} \to \tau \nu_{\tau})} \times f_{\mathsf{D}_{\mathsf{s}}}^{\tau} \times \frac{\varepsilon_{\mathsf{norm}}}{\varepsilon_{\mathsf{sig}}} \times \frac{\mathsf{N}_{\mathsf{sig}}}{\mathsf{N}_{\mathsf{norm}}} = \alpha \times \mathsf{N}_{\mathsf{sig}}$$

- \bullet where ε stands for trigger, reconstruction, selection efficiency.
- $f_{D_s}^{\tau}$ is the fraction of τ coming from D_s .
- norm = normalisation channel $D_s \rightarrow \phi \pi$ i.e. (83 ± 3)% for 2012.

Misidentification

- Most dominant: $D^+ \rightarrow K\pi\pi$.
- Also seen $D^+ \rightarrow \pi \pi \pi$ and $D_s \rightarrow \pi \pi \pi$.
- All contained in the lowest \mathcal{M}_{PID} bin.

Fraction of candidates per bin

Dangerous backgrounds

• $\phi \rightarrow \mu \mu + X$: narrow veto on dimuon mass.

•
$$\mathsf{D}_{\mathsf{s}} o \eta(\mu\mu\gamma)\mu\nu_{\mu}$$
: not so easy:

- Model it
- <u>Remove it</u> with dimuon mass cut:
 - Fits better understood.
 - Sensitivity unchanged when removing veto.
 - Smaller uncertainty on expected background.

Remaining backgrounds

- Fit exponential to invariant mass spectrum in each likelihood bin.
- Don't use blinded region ($\pm 30 \mbox{ MeV}$).
- ightarrow Compatible results blinding only $\pm 20~{
 m MeV^2}$

Example of most sensitive regions in 2011 and 2012

University of Zurich¹²⁸⁴

²partially used in classifier development

Marcin Chrząszcz (UZH, IFJ)

Model dependence

- η veto \Rightarrow our limit not constraining to New Physics with small $m_{\mu^+\mu^-}$.
- Model description in arXiv:0707.0988 by S.Turczyk.
- 5 relevant Dalitz distributions: 2 four-point operators, 1 radiative operator, 2 interference terms.

Model dependence

- η veto \Rightarrow our limit not constraining to New Physics with small $m_{\mu^+\mu^-}$.
- Model description in arXiv:0707.0988 by S.Turczyk.
- 5 relevant Dalitz distributions: 2 four-point operators, 1 radiative operator, 2 interference terms.
- With radiative distribution limit gets worse by a factor of 1.5 (dominantly from the η veto).
- The other four Dalitz distributions behave nicely (within 7 %).

Results

Limits(PHSP): Observed(Expected) 4.6 (5.0) \times 10⁻⁸ at 90% CL 5.6 (6.1) \times 10⁻⁸ at 95% CL

$$\begin{array}{c|c} \text{Dalitz distribution} & x10^{-6}\\ \varrho_V^{(LL)(LL)} & 4.2 (4.7)\\ \varrho_V^{(LL)(RR)} & 4.1 (4.6)\\ \varrho_{rad}^{(LR)} & 6.8 (7.6)\\ \varrho_{mix}^{(LL)(LL)} & 4.4 (5.1)\\ \varrho_{mix}^{(LL)(RR)} & 4.6 (5.0) \end{array}$$

Marcin Chrząszcz (UZH, IFJ)

"The Rule of Three"

To conclude:

- LHCb updated $au
 ightarrow \mu \mu \mu$ with full data set.
- We are getting close to B-factories.
- Thanks to 3 experiments we have a world limit: $\mathcal{B}(\tau \rightarrow \mu \mu \mu) < 1.2 \times 10^{-8}$ at 90% CL.

