import ROOT #from ROOT import TTree, TFile, Double import numpy as np from pdg_const import pdg import matplotlib matplotlib.use("Qt5Agg") import matplotlib.pyplot as plt import pickle as pkl import sys import time from helperfunctions import display_time import cmath as c mmu = pdg['muon_M'] mb = pdg["bquark_M"] ms = pdg["squark_M"] mK = pdg["Ks_M"] mB = pdg["Bplus_M"] class model: def __init__(self): self.mmu = pdg['muon_M'] self.mb = pdg["bquark_M"] self.ms = pdg["squark_M"] self.mK = pdg["Ks_M"] self.mB = pdg["Bplus_M"] self.C7eff = pdg["C7eff"] self.C9eff = pdg["C9eff"] self.C10eff = pdg["C10eff"] #self.C1 = pdg["C1"] #self.C2 = pdg["C2"] #self.C3 = pdg["C3"] #self.C4 = pdg["C4"] self.GF = pdg["GF"] #Fermi coupling const. self.alpha_ew = pdg["alpha_ew"] self.Vts = pdg["Vts"] self.Vtb = pdg["Vtb"] self.x_min = 2*self.mmu self.x_max = (self.mB - self.mK) - 0.1 self.total_pdf_string = "self.total_nonres(q2)" self.mode = "" self.total_scale_amp = 1.0 self._mean = 0.0 self.cusp_mean = 1 self.cusp_sigma_L = 1 self.cusp_sigma_R = 1 self.cusp_amp = 0 def formfactor(self, q2, subscript): #check if subscript is viable if subscript != "0" and subscript != "+" and subscript != "T": raise ValueError('Wrong subscript entered, choose either 0, + or T') #get constants mh = self.mK mbstar0 = pdg["mbstar0"] mbstar = pdg["mbstar"] b0 = pdg["b0"] bplus = pdg["bplus"] bT = pdg["bT"] N = 3 #some helperfunctions tpos = (self.mB - self.mK)**2 tzero = (self.mB + self.mK)*(np.sqrt(self.mB)-np.sqrt(self.mK))**2 z_oben = np.sqrt(tpos - q2) - np.sqrt(tpos - tzero) z_unten = np.sqrt(tpos - q2) + np.sqrt(tpos - tzero) z = z_oben/z_unten #calculate f0 if subscript == "0": prefactor = 1/(1 - q2/(mbstar0**2)) _sum = 0 for i in range(N): _sum += b0[i]*(z**i) return prefactor * _sum #calculate f+ or fT else: prefactor = 1/(1 - q2/(mbstar**2)) _sum = 0 if subscript == "T": b = bT else: b = bplus for i in range(N): _sum += b[i] * (z**i - ((-1)**(i-N)) * (i/N) * z**N) return prefactor * _sum def axiv_nonres(self, q2): GF = self.GF alpha_ew = self.alpha_ew Vtb = self.Vtb Vts = self.Vts C10eff = self.C10eff mmu = self.mmu mb = self.mb ms = self.ms mK = self.mK mB = self.mB #Some helperfunctions beta = np.sqrt(abs(1. - 4. * self.mmu**2. / q2)) kabs = np.sqrt(mB**2 + q2**2/mB**2 + mK**4/mB**2 - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2) #prefactor in front of whole bracket prefactor1 = GF**2. *alpha_ew**2. * (abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.) #left term in bracket bracket_left = 2./3. * kabs**2 * beta**2 * abs(C10eff*self.formfactor(q2, "+"))**2 #middle term in bracket _top = 4. * mmu**2 * (mB**2 - mK**2) * (mB**2 - mK**2) _under = q2 * mB**2 bracket_middle = _top/_under * abs(C10eff * self.formfactor(q2, "0"))**2 return prefactor1 * (bracket_left + bracket_middle) * 2 * np.sqrt(q2) def vec_nonres(self, q2): GF = self.GF alpha_ew = self.alpha_ew Vtb = self.Vtb Vts = self.Vts C7eff = self.C7eff C9eff = self.C9eff mmu = self.mmu mb = self.mb ms = self.ms mK = self.mK mB = self.mB #Some helperfunctions beta = np.sqrt(abs(1. - 4. * self.mmu**2. / q2)) kabs = np.sqrt(mB**2 + q2**2/mB**2 + mK**4/mB**2 - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2) #prefactor in front of whole bracket prefactor1 = GF**2. *alpha_ew**2. * (abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.) #right term in bracket prefactor2 = kabs**2 * (1. - 1./3. * beta**2) abs_bracket = abs(C9eff * self.formfactor(q2, "+") + 2 * C7eff * (mb + ms)/(mB + mK) * self.formfactor(q2, "T"))**2 bracket_right = prefactor2 * abs_bracket return prefactor1 * bracket_right * 2 * np.sqrt(q2) def total_nonres(self, q2): #Get constants GF = self.GF alpha_ew = self.alpha_ew Vtb = self.Vtb Vts = self.Vts C10eff = self.C10eff C9eff = self.C9eff C7eff = self.C7eff mmu = self.mmu mb = self.mb ms = self.ms mK = self.mK mB = self.mB #vector nonresonant part vec_nonres_part = self.vec_nonres(q2) #axial verctor nonresonant part including C7 axiv_nonres_part = self.axiv_nonres(q2) #Complete term return self.total_scale_amp*complex(vec_nonres_part + axiv_nonres_part, 0.0) def generate_points(self, set_size = 10000, x_min = 2* mmu, x_max = (mB - mK) - 0.1, save = True, verbose = 1, mode = "slim_points", resolution = 7.0, min_bin_scaling = 100): #Setup contants and variables if mode != "slim_points" and mode != "full_points" and mode != "fast_binned": raise ValueError('Wrong mode entered, choose either slim_points, full_points or fast_binned') self.mode = mode mB = self.mB mK = self.mK mmu = self.mmu #Range of function in MeV dq = np.linspace(x_min, x_max ,5000) x1 = 2500 y1 = self.total_pdf(x1**2) x2 = 4000 y2 = self.total_pdf(x2**2) #Translate to MeV**2 dgamma_tot = [] for i in dq: dgamma_tot.append(self.total_pdf(i**2)) dq2 = [] for i in dq: dq2.append(i**2) #Generate random points psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"] _max = max(dgamma_tot) A1_x1 = (_max-y1)*x1 A23_x1 = y1*x1 A1_x2 = (_max-y2)*x2 A23_x2 = y2*x2 if mode == "slim_points": x_part = [] y_part = [] print("Generating set of size {}...".format(int(set_size))) #print(len(y)) #ROOT.TRandom1().SetSeed(0) if verbose != 0: verbose_calls = [] j = 0 o = 0 while j < 100: j += verbose verbose_calls.append(int(set_size*j/100)) start = time.time() counter = 0 counter_x = 0 while len(x_part) < set_size: counter += 1 x = ROOT.TRandom1().Uniform(x_min, x_max) y = ROOT.TRandom1().Uniform(0, _max) if y < self.total_pdf(x**2): x_part.append(x) counter_x += 1 #progress calls if verbose != 0: end = time.time() if o*verbose+verbose < 100 and counter%300 == 0: print(" {0}{1} completed".format(o*verbose+verbose, "%")) print(" Projected time left: {0}".format(display_time(int((end-start)*set_size/(len(x_part)+1)-(end-start))))) sys.stdout.write("\033[F") sys.stdout.write("\x1b[2K") sys.stdout.write("\033[F") sys.stdout.write("\x1b[2K") if o*verbose + verbose >=100: sys.stdout.write("\033[F") sys.stdout.write("\x1b[2K") print(" Time to generate set: {0}".format(display_time(int(end-start)))) if len(x_part) == verbose_calls[o]: o += 1 print(" {0} out of {1} particles chosen!".format(int(counter_x), counter)) print(" Set generated!") #Save the set if save: part_set = {"x_part" : x_part, "y_part": y_part, "counter_tot": counter, "counter_x": counter_x} pkl.dump( part_set, open("./data/set_{0}_range({1}-{2}).pkl".format(int(set_size),int(x_min), int(x_max)) , "wb" ) ) print(" Set saved!") print #returns all the chosen points (x_part, y_part) and all the random points generated (x, y) return x_part, y_part, counter if mode == "full_points": x = [] y = [] x_part = [] y_part = [] print("Generating set of size {}...".format(int(set_size))) #print(len(y)) #ROOT.TRandom1().SetSeed(0) if verbose != 0: verbose_calls = [] j = 0 o = 0 while j < 100: j += verbose verbose_calls.append(int(set_size*j/100)) start = time.time() counter = 0 counter_x = 0 while len(x_part) < set_size: counter += 1 x.append(ROOT.TRandom1().Uniform(x_min, x_max)) y.append(ROOT.TRandom1().Uniform(0, _max)) if y[-1] < self.total_pdf(x[-1]**2): x_part.append(x) y_part.append(y) counter_x += 1 #progress calls if verbose != 0: end = time.time() if o*verbose+verbose < 100 and counter%300 == 0: print(" {0}{1} completed".format(o*verbose+verbose, "%")) print(" Projected time left: {0}".format(display_time(int((end-start)*set_size/(len(x_part)+1)-(end-start))))) sys.stdout.write("\033[F") sys.stdout.write("\x1b[2K") sys.stdout.write("\033[F") sys.stdout.write("\x1b[2K") if o*verbose + verbose >=100: sys.stdout.write("\033[F") sys.stdout.write("\x1b[2K") print(" Time to generate set: {0}".format(display_time(int(end-start)))) if len(x_part) == verbose_calls[o]: o += 1 print(" {0} out of {1} particles chosen!".format(len(x_part), counter)) print(" Set generated!") #Save the set if save: part_set = {"x_part" : x_part, "y_part": y_part, "counter": counter} raw_set = {"x" : x, "y": y, "counter": counter} pkl.dump( part_set, open("./data/set_{0}.pkl".format(int(set_size)) , "wb" ) ) pkl.dump( part_set, open("./data/set_raw_{0}.pkl".format(int(set_size)) , "wb" ) ) print(" Sets saved!") print #returns all the chosen points (x_part, y_part) and all the random points generated (x, y) return x_part, y_part, counter if mode == "fast_binned": nbins = int((x_max-x_min)/resolution) print("Generating set with {} bins...".format(nbins)) dq = np.linspace(x_min, x_max ,nbins+1) bin_mean = [] bin_true_height = [] for i in range(len(dq)-1): a = dq[i] b = dq[i+1] c = (a+b)/2 bin_mean.append(c) height = self.total_pdf(c**2) bin_true_height.append(height) _min = min(bin_true_height) for i in range(len(bin_true_height)): bin_true_height[i] = bin_true_height[i]/_min*min_bin_scaling start = time.time() bin_height = [] for i in range(len(bin_mean)): bin_height.append(int(ROOT.TRandom1().Gaus(bin_true_height[i], np.sqrt(bin_true_height[i])))) #print(int(ROOT.TRandom1().Gaus(bin_true_height[i], np.sqrt(bin_true_height[i])))) #progress calls if verbose != 0: end = time.time() print(" Time to generate set: {0}s".format(end-start)) print(" {0} bins simulated".format(nbins)) print(" Set generated!") #Save the set if save: _ = 0 for i in bin_height: _ += i part_set = {"bin_mean" : bin_mean, "bin_height": bin_height, "nbins": nbins} pkl.dump( part_set, open("./data/binned_set_{0}bins_{1}part.pkl".format(nbins, _) , "wb" ) ) print(" Set saved!") print return bin_mean, bin_height, nbins def draw_plots(self, part_set, counter, mode,min_bin_scaling = 100, x_min = 2* mmu, x_max = (mB - mK) - 0.1, resolution = 7): if mode != "slim_points" and mode != "full_points" and mode != "fast_binned": raise ValueError('Wrong mode entered, choose either slim_points, full_points or fast_binned') if mode != self.mode: raise ValueError('self.mode and mode are different, set them to the same value') #Resolution based on experiment chosen to be ~7MeV #Setup contants and variables print("Generating plots") if mode == "fast_binned": mB = self.mB mK = self.mK mmu = self.mmu #Range of function in MeV dq = np.linspace(x_min, x_max ,5000) #Translate to MeV**2 dq2 = [] for i in dq: dq2.append(i**2) #calculate formfactors ff_plus = [] ff_T = [] ff_0 = [] for i in dq: ff_0.append(self.formfactor(i**2, "0")) ff_T.append(self.formfactor(i**2, "T")) ff_plus.append(self.formfactor(i**2, "+")) #calculate nonresonant dgamma_axiv_nonres = [] dgamma_vec_nonres = [] dgamma_tot = [] for i in dq: dgamma_axiv_nonres.append(self.axiv_nonres(i**2)) dgamma_vec_nonres.append(self.vec_nonres(i**2)) dgamma_tot.append(self.total_pdf(i**2)) #Plot formfactors plt.plot(dq2, ff_0, label = "0") plt.plot(dq2, ff_T, label = "T") plt.plot(dq2, ff_plus, label = "+") plt.grid() plt.title("Formfactors") plt.legend() plt.savefig("./plots/fast_binned/ff.png") print(" ff.png created") plt.clf() #Plot nonresonant part plt.plot(dq, dgamma_axiv_nonres, label = "axiv") plt.plot(dq, dgamma_vec_nonres, label = "vec") plt.grid() plt.title("Nonresonant axial vector and vector parts") plt.legend() plt.savefig("./plots/fast_binned/vec_axiv.png") print(" vec_axiv.png created") plt.clf() plt.plot(dq, dgamma_tot, label = "total") plt.grid() plt.title("Total pdf") plt.legend() plt.savefig("./plots/fast_binned/tot.png") print(" tot.png created") #All pdfs #print(test_x[1]**2 - self.x_min**2) tot_y = [] jpsi_y = [] psi2s_y = [] total_nonres_y = [] cusp_y = [] jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg["jpsi"] psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"] for i in range(len(dq)): #print(i**2 - 4*(mmu**2)) tot_y.append(abs(self.total_pdf(dq[i]**2))) jpsi_y.append(abs(self.resonance(dq[i]**2, jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale))) psi2s_y.append(abs(self.resonance(dq[i]**2, psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale))) total_nonres_y.append(abs(self.total_nonres(dq[i]**2))) cusp_y.append(abs(self.bifur_gauss(dq[i]**2, self.cusp_mean, self.cusp_amp, self.cusp_sigma_L, self.cusp_sigma_R ))) #resonance(self, q2, _mass, width, phase, scale): #w[i] = np.sqrt(w[i]) #print(test_y[i]) plt.clf() plt.title("All pdfs") #plt.yscale("log") plt.ylim(0, 1e-5) plt.grid() plt.plot(dq, tot_y, label = "total pdf") plt.plot(dq, jpsi_y, label = "jpsi") plt.plot(dq, psi2s_y, label = "psi2s") plt.plot(dq, total_nonres_y, label = "nonres") plt.plot(dq, cusp_y, label = "cusp") plt.legend() plt.savefig("./plots/fast_binned/pdf_and_parts.png") print(" pdf_and_parts.png created") #Create histo with pdf #Translate to MeV**2 plt.clf() dq2 = [] for i in dq: dq2.append(i**2) dgamma_tot = [] for i in dq2: dgamma_tot.append(self.total_pdf(i)) _min = min(dgamma_tot) for i in range(len(dgamma_tot)): dgamma_tot[i] = dgamma_tot[i]/_min*min_bin_scaling bin_mean, bin_height = part_set nbins = counter plt.hist(bin_mean, bins=nbins, range=(self.x_min, self.x_max), weights = bin_height, label = "toy data binned") plt.plot(dq, dgamma_tot, label = "pdf") _sum = 0 for i in bin_height: _sum += i #print(_max) plt.grid() plt.ylim(0, 2000) plt.legend() plt.title("{0} random points generated according to pdf ({1} particles)".format(len(bin_mean), _sum)) plt.savefig("./plots/fast_binned/histo.png") print(" histo.png created") print(" All plots drawn \n") return else: mB = self.mB mK = self.mK mmu = self.mmu #Range of function in MeV dq = np.linspace(x_min, x_max ,5000) #Translate to MeV**2 dq2 = [] for i in dq: dq2.append(i**2) #calculate formfactors ff_plus = [] ff_T = [] ff_0 = [] for i in dq: ff_0.append(self.formfactor(i**2, "0")) ff_T.append(self.formfactor(i**2, "T")) ff_plus.append(self.formfactor(i**2, "+")) #calculate nonresonant dgamma_axiv_nonres = [] dgamma_vec_nonres = [] dgamma_tot = [] for i in dq: dgamma_axiv_nonres.append(self.axiv_nonres(i**2)) dgamma_vec_nonres.append(self.vec_nonres(i**2)) dgamma_tot.append(self.total_pdf(i**2)) #Plot formfactors plt.plot(dq2, ff_0, label = "0") plt.plot(dq2, ff_T, label = "T") plt.plot(dq2, ff_plus, label = "+") plt.grid() plt.title("Formfactors") plt.legend() plt.savefig("./plots/points/ff.png") print(" ff.png created") plt.clf() #Plot nonresonant part plt.plot(dq, dgamma_axiv_nonres, label = "axiv") plt.plot(dq, dgamma_vec_nonres, label = "vec") plt.grid() plt.title("Nonresonant axial vector and vector parts") plt.legend() plt.savefig("./plots/points/vec_axiv.png") print(" vec_axiv.png created") plt.clf() plt.plot(dq, dgamma_tot, label = "total") plt.grid() plt.title("Total pdf") plt.legend() plt.savefig("./plots/points/tot.png") print(" tot.png created") #Particle set x_part, y_part = part_set set_size = len(x_part) #Plot generated generate_points #plt.clf() #plt.plot(x_part, y_part, label = "Random points generated", marker = ".", linewidth = 0) #plt.plot(dq, dgamma_tot, label = "pdf") #plt.grid() #plt.title("Random points generated and pdf") #plt.legend() #plt.savefig("./plots/points/points_raw.png") #print(" points_raw.png created") #Histo unnormalized bins = int((x_max-x_min)/resolution) plt.clf() wheights = np.ones_like(x_part) _max = max(dgamma_tot) x1 = 2500 y1 = self.total_pdf(x1**2) x2 = 4000 y2 = self.total_pdf(x2**2) for i in range(len(wheights)): if x_part[i] < x1: wheights[i] = x1*y1/(x1*_max) elif x_part[i] > x2: wheights[i] = x2*y2/(x2*_max) _y, _x, _ = plt.hist(x_part, bins=bins, weights = wheights, range=(x_min, x_max), label = "toy data binned ({0} points)".format(sum(wheights))) _mean_histo = float(np.mean(_y)) plt.legend() plt.title("Binned toy data") plt.savefig("./plots/points/histo_raw.png") print(" histo_raw.png created") #Histo and pdf normailzed plt.clf() for i in range(len(dgamma_tot)): dgamma_tot[i] = dgamma_tot[i]/(float(set_size)*_max * 2.0 * mmu / counter) _mean = np.mean(dgamma_tot) #Attempt for marked field of std-dev #dgamma_min = [] #dgamma_plu = [] #for i in range(len(dgamma_tot)): #dgamma_min.append(dgamma_tot[i]-np.sqrt(dgamma_tot[i])) #dgamma_plu.append(dgamma_tot[i]+np.sqrt(dgamma_tot[i])) #plt.plot(dq, dgamma_min, alpha = 0.5) #plt.plot(dq, dgamma_plu, alpha = 0.5) #plt.fill_between(dq, dgamma_min, dgamma_plu) #Plot histo plt.hist(x_part, bins=bins, range=(x_min, x_max), weights = wheights/(_mean_histo/_mean), label = "toy data binned") plt.plot(dq, dgamma_tot, label = "pdf") #print(_max) plt.grid() plt.legend() plt.ylim(0, 1e-5) plt.title("{0} random points generated according to pdf".format(sum(wheights))) plt.savefig("./plots/points/histo.png") print(" histo.png created") #All pdfs #print(test_x[1]**2 - self.x_min**2) tot_y = [] jpsi_y = [] psi2s_y = [] total_nonres_y = [] cusp_y = [] jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg["jpsi"] psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"] for i in range(len(dq)): #print(i**2 - 4*(mmu**2)) tot_y.append(abs(self.total_pdf(dq[i]**2))) jpsi_y.append(abs(self.resonance(dq[i]**2, jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale))) psi2s_y.append(abs(self.resonance(dq[i]**2, psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale))) total_nonres_y.append(abs(self.total_nonres(dq[i]**2))) cusp_y.append(abs(self.bifur_gauss(dq[i]**2, self.cusp_mean, self.cusp_amp, self.cusp_sigma_L, self.cusp_sigma_R ))) #resonance(self, q2, _mass, width, phase, scale): #w[i] = np.sqrt(w[i]) #print(test_y[i]) plt.clf() plt.title("All pdfs") #plt.yscale("log") plt.ylim(0, 2*self._mean) plt.grid() plt.plot(dq, tot_y, label = "total pdf") plt.plot(dq, jpsi_y, label = "jpsi") plt.plot(dq, psi2s_y, label = "psi2s") plt.plot(dq, total_nonres_y, label = "nonres") plt.plot(dq, cusp_y, label = "cusp") plt.legend() plt.savefig("./plots/points/pdf_and_parts.png") print(" pdf_and_parts.png created") print(" All plots drawn \n") return def total_pdf(self, q2, cusp_amp = -1.0, scan = False): if scan: self.normalize_pdf() if cusp_amp == -1.0: cusp_amp = cusp_amp else: cusp_amp = self.cusp_amp #Calculate the pdf with the added resonances exec("_sum = abs({0})".format(self.total_pdf_string)) return _sum def resonance(self, q2, _mass, width, phase, scale): #returns [real, imaginary] #calculate the resonance ---------------------------------------------> Formula correct? #if abs(np.sqrt(q2) - _mass) < 300: #return 0., 0. np.sqrt(mB**2 + q2**2/mB**2 + mK**4/mB**2 - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2) #print(q2) #Teiler erweitert mit kompl. konj. #p = 0.5 * np.sqrt(q2 - 4*(mmu**2)) #p0 = 0.5 * np.sqrt(_mass**2 - 4*mmu**2) #gamma_j = p / p0 * _mass /q2 * width #_top_im = - _mass**2 * width * gamma_j #_top_re = _mass * width * (_mass**2 - q2) #_bottom = (_mass**2 - q2)**2 + _mass**2 * gamma_j**2 #real = _top_re/_bottom #imaginary = _top_im/_bottom #com = complex(real, imaginary) * scale #r = abs(com) #_phase = c.phase(com) #_phase += phase #x = c.cos(phase)*r #y = c.sin(phase)*r #com = complex(x,y) #Original formula p = 0.5 * np.sqrt(q2 - 4*(mmu**2)) p0 = 0.5 * np.sqrt(_mass**2 - 4*mmu**2) gamma_j = p / p0 * _mass /q2 * width _top = complex(_mass * width, 0.0) _bottom = complex((_mass**2 - q2), -_mass*gamma_j) com = _top/_bottom * scale r = abs(com) _phase = c.phase(com) _phase += phase x = c.cos(phase)*r y = c.sin(phase)*r com = complex(x,y) return self.total_scale_amp*com def add_resonance(self, _mass, width, phase, scale): #Adds the resonace to the pdf in form of a string (to be executed later) self.total_pdf_string += "+ self.resonance(q2,{0},{1},{2},{3})".format(_mass, width, phase, scale) def bifur_gauss(self, q2, mean, amp, sigma_L, sigma_R): q = np.sqrt(q2) if q < mean: sigma = sigma_L else: sigma = sigma_R _exp = np.exp(- (q-mean)**2 / (2 * sigma**2)) dgamma = amp*_exp/(np.sqrt(2*np.pi))*2*(sigma_L*sigma_R)/(sigma_L+sigma_R) com = complex(dgamma, 0) return self.total_scale_amp*com def add_cusp(self, mean, amp, sigma_L, sigma_R): self.total_pdf_string += "+ self.bifur_gauss(q2,{0},{1},{2},{3})".format(mean, "cusp_amp", sigma_L, sigma_R) self.cusp_mean = mean self.cusp_sigma_L = sigma_L self.cusp_sigma_R = sigma_R self.cusp_amp = amp def normalize_pdf(self): self.total_scale_amp = 1.0 x_scan = np.linspace(self.x_min, self.x_max, 10000) y_scan = [] for i in x_scan: y_scan.append(self.total_pdf(i**2)) _mean = np.mean(y_scan) self.total_scale_amp = 1.0/(self.x_max-self.x_min)*_mean self._mean = _mean * self.total_scale_amp def log_likelihood(self, x_part, cusp_amp): _sum = 0.0 for i in x_part: _sum += np.log(self.total_pdf(i**2, cusp_amp = cusp_amp, scan = True)) return _sum