#!/usr/bin/env python # coding: utf-8 # # Import # In[1]: import numpy as np from pdg_const import pdg import matplotlib import matplotlib.pyplot as plt import pickle as pkl import sys import time from helperfunctions import display_time, prepare_plot import cmath as c import scipy.integrate as integrate from scipy.optimize import fminbound from array import array as arr import collections from itertools import compress import tensorflow as tf import zfit from zfit import ztf # # Build model and graphs # ## Create graphs # In[2]: def formfactor( q2, subscript): #returns real value #check if subscript is viable if subscript != "0" and subscript != "+" and subscript != "T": raise ValueError('Wrong subscript entered, choose either 0, + or T') #get constants mK = ztf.constant(pdg['Ks_M']) mbstar0 = ztf.constant(pdg["mbstar0"]) mbstar = ztf.constant(pdg["mbstar"]) b0 = ztf.constant(pdg["b0"]) bplus = ztf.constant(pdg["bplus"]) bT = ztf.constant(pdg["bT"]) mmu = ztf.constant(pdg['muon_M']) mb = ztf.constant(pdg['bquark_M']) ms = ztf.constant(pdg['squark_M']) mB = ztf.constant(pdg['Bplus_M']) #N comes from derivation in paper N = 3 #some helperfunctions tpos = (mB - mK)**2 tzero = (mB + mK)*(ztf.sqrt(mB)-ztf.sqrt(mK))**2 z_oben = ztf.sqrt(tpos - q2) - ztf.sqrt(tpos - tzero) z_unten = ztf.sqrt(tpos - q2) + ztf.sqrt(tpos - tzero) z = tf.divide(z_oben, z_unten) #calculate f0 if subscript == "0": prefactor = 1/(1 - q2/(mbstar0**2)) _sum = 0 for i in range(N): _sum += b0[i]*(tf.pow(z,i)) return tf.complex(prefactor * _sum, ztf.constant(0.0)) #calculate f+ or fT else: prefactor = 1/(1 - q2/(mbstar**2)) _sum = 0 if subscript == "T": b = bT else: b = bplus for i in range(N): _sum += b[i] * (tf.pow(z, i) - ((-1)**(i-N)) * (i/N) * tf.pow(z, N)) return tf.complex(prefactor * _sum, ztf.constant(0.0)) def resonance(q, _mass, width, phase, scale): q2 = tf.pow(q, 2) mmu = ztf.constant(pdg['muon_M']) p = 0.5 * ztf.sqrt(q2 - 4*(mmu**2)) p0 = 0.5 * ztf.sqrt(_mass**2 - 4*mmu**2) gamma_j = tf.divide(p, q2) * _mass * width / p0 #Calculate the resonance _top = tf.complex(_mass * width, ztf.constant(0.0)) _bottom = tf.complex(_mass**2 - q2, -_mass*gamma_j) com = _top/_bottom #Rotate by the phase r = tf.abs(com) _phase = tf.angle(com) _phase += phase x = tf.cos(phase)*r y = tf.sin(phase)*r com = tf.complex(scale* x, scale * y) return com def bifur_gauss(q, mean, sigma_L, sigma_R, scale): _exp = tf.where(q < mean, ztf.exp(- tf.pow((q-mean),2) / (2 * sigma_L**2)), ztf.exp(- tf.pow((q-mean),2) / (2 * sigma_R**2))) #Scale so the total area under curve is 1 and the top of the cusp is continuous dgamma = scale*_exp/(ztf.sqrt(2*np.pi))*2*(sigma_L*sigma_R)/(sigma_L+sigma_R) com = ztf.complex(dgamma, ztf.constant(0.0)) return com def axiv_nonres(q): GF = ztf.constant(pdg['GF']) alpha_ew = ztf.constant(pdg['alpha_ew']) Vtb = ztf.constant(pdg['Vtb']) Vts = ztf.constant(pdg['Vts']) C10eff = ztf.constant(pdg['C10eff']) mmu = ztf.constant(pdg['muon_M']) mb = ztf.constant(pdg['bquark_M']) ms = ztf.constant(pdg['squark_M']) mK = ztf.constant(pdg['Ks_M']) mB = ztf.constant(pdg['Bplus_M']) q2 = tf.pow(q, 2) #Some helperfunctions beta = ztf.sqrt(tf.abs(1. - 4. * mmu**2. / q2)) kabs = ztf.sqrt(mB**2. +tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2. * (mB**2. * mK**2. + mK**2. * q2 + mB**2. * q2) / mB**2.) #prefactor in front of whole bracket prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2. * kabs * beta / (128. * np.pi**5.) #left term in bracket bracket_left = 2./3. * kabs**2. * beta**2. *tf.abs(tf.complex(C10eff, ztf.constant(0.0))*formfactor(q2, "+"))**2. #middle term in bracket _top = 4. * mmu**2. * (mB**2. - mK**2.) * (mB**2. - mK**2.) _under = q2 * mB**2. bracket_middle = _top/_under *tf.pow(tf.abs(tf.complex(C10eff, ztf.constant(0.0)) * formfactor(q2, "0")), 2) #Note sqrt(q2) comes from derivation as we use q2 and plot q return prefactor1 * (bracket_left + bracket_middle) * 2 *ztf.sqrt(q2) def vec(q, funcs): q2 = tf.pow(q, 2) GF = ztf.constant(pdg['GF']) alpha_ew = ztf.constant(pdg['alpha_ew']) Vtb = ztf.constant(pdg['Vtb']) Vts = ztf.constant(pdg['Vts']) C7eff = ztf.constant(pdg['C7eff']) mmu = ztf.constant(pdg['muon_M']) mb = ztf.constant(pdg['bquark_M']) ms = ztf.constant(pdg['squark_M']) mK = ztf.constant(pdg['Ks_M']) mB = ztf.constant(pdg['Bplus_M']) #Some helperfunctions beta = ztf.sqrt(tf.abs(1. - 4. * mmu**2. / q2)) kabs = ztf.sqrt(mB**2. + tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2) #prefactor in front of whole bracket prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.) #right term in bracket prefactor2 = kabs**2 * (1. - 1./3. * beta**2) abs_bracket = tf.abs(c9eff(q, funcs) * formfactor(q2, "+") + tf.complex(2.0 * C7eff * (mb + ms)/(mB + mK), ztf.constant(0.0)) * formfactor(q2, "T"))**2 bracket_right = prefactor2 * abs_bracket #Note sqrt(q2) comes from derivation as we use q2 and plot q return prefactor1 * bracket_right * 2 * ztf.sqrt(q2) def c9eff(q, funcs): C9eff_nr = tf.complex(ztf.constant(pdg['C9eff']), ztf.constant(0.0)) c9 = C9eff_nr c9 = c9 + funcs return c9 # In[3]: def G(y): def inner_rect_bracket(q): return tf.log(ztf.to_complex((1+tf.sqrt(q))/(1-tf.sqrt(q)))-tf.complex(ztf.constant(0), -1*ztf.constant(np.pi))) def inner_right(q): return ztf.to_complex(2 * tf.atan(1/tf.sqrt(-q))) big_bracket = tf.where(y > ztf.const(0.0), inner_rect_bracket(y), inner_right(y)) return ztf.to_complex(tf.sqrt(tf.abs(y))) * big_bracket def h_S(m, q): return tf.constant(2) - G(tf.constant(1) - 4*tf.pow(m, 2) / tf.pow(q, 2)) def h_P(m,q): return 2/3 + (1 - (tf.constant(1) - 4*tf.pow(m, 2) / tf.pow(q, 2))) * h_S(m,q) # ## Build pdf # In[4]: class total_pdf(zfit.pdf.ZPDF): _N_OBS = 1 # dimension, can be omitted _PARAMS = ['jpsi_mass', 'jpsi_scale', 'jpsi_phase', 'jpsi_width', 'psi2s_mass', 'psi2s_scale', 'psi2s_phase', 'psi2s_width', 'cusp_mass', 'sigma_L', 'sigma_R', 'cusp_scale' ] # the name of the parameters def _unnormalized_pdf(self, x): x = x.unstack_x() def jpsi_res(q): return resonance(q, _mass = self.params['jpsi_mass'], scale = self.params['jpsi_scale'], phase = self.params['jpsi_phase'], width = self.params['jpsi_width']) def psi2s_res(q): return resonance(q, _mass = self.params['psi2s_mass'], scale = self.params['psi2s_scale'], phase = self.params['psi2s_phase'], width = self.params['psi2s_width']) def cusp(q): return bifur_gauss(q, mean = self.params['cusp_mass'], sigma_L = self.params['sigma_L'], sigma_R = self.params['sigma_R'], scale = self.params['cusp_scale']) funcs = jpsi_res(x) + psi2s_res(x) + cusp(x) vec_f = vec(x, funcs) axiv_nr = axiv_nonres(x) tot = vec_f + axiv_nr return tot # ## Load data # In[5]: x_min = 2*pdg['muon_M'] x_max = (pdg["Bplus_M"]-pdg["Ks_M"]-0.1) obs = zfit.Space('q', limits = (x_min, x_max)) with open(r"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl".format(int(x_min), int(x_max)), "rb") as input_file: part_set = pkl.load(input_file) x_part = part_set['x_part'] x_part = x_part.astype('float64') data = zfit.data.Data.from_numpy(array=x_part, obs=obs) # ## Setup parameters # In[6]: #jpsi jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg["jpsi"] jpsi_scale *= pdg["factor_jpsi"] jpsi_m = zfit.Parameter("jpsi_m", ztf.constant(jpsi_mass), floating = False) jpsi_w = zfit.Parameter("jpsi_w", ztf.constant(jpsi_width), floating = False) jpsi_p = zfit.Parameter("jpsi_p", ztf.constant(jpsi_phase), floating = False) jpsi_s = zfit.Parameter("jpsi_s", ztf.constant(jpsi_scale), floating = False) #psi2s psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"] psi2s_scale *= pdg["factor_psi2s"] psi2s_m = zfit.Parameter("psi2s_m", ztf.constant(psi2s_mass), floating = False) psi2s_w = zfit.Parameter("psi2s_w", ztf.constant(psi2s_width), floating = False) psi2s_p = zfit.Parameter("psi2s_p", ztf.constant(psi2s_phase), floating = False) psi2s_s = zfit.Parameter("psi2s_s", ztf.constant(psi2s_scale), floating = False) #cusp cusp_mass, sigma_R, sigma_L, cusp_scale = 3550, 3e-7, 200, 0 cusp_m = zfit.Parameter("cusp_m", ztf.constant(cusp_mass)) sig_L = zfit.Parameter("sig_L", ztf.constant(sigma_L)) sig_R = zfit.Parameter("sig_R", ztf.constant(sigma_R)) cusp_s = zfit.Parameter("cusp_s", ztf.constant(cusp_scale)) # ## Setup pdf # In[7]: total_f = total_pdf(obs=obs, jpsi_mass = jpsi_m, jpsi_scale = jpsi_s, jpsi_phase = jpsi_p, jpsi_width = jpsi_w, psi2s_mass = psi2s_m, psi2s_scale = psi2s_s, psi2s_phase = psi2s_p, psi2s_width = psi2s_w, cusp_mass = cusp_m, sigma_L = sig_L, sigma_R = sig_R, cusp_scale = cusp_s) # print(total_pdf.obs) # ## Test if graphs actually work and compute values # In[8]: def total_test_tf(xq): def jpsi_res(q): return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w) def psi2s_res(q): return resonance(q, psi2s_m, psi2s_s, psi2s_p, psi2s_w) def cusp(q): return bifur_gauss(q, cusp_m, sig_L, sig_R, cusp_s) funcs = jpsi_res(xq) + psi2s_res(xq) + cusp(xq) vec_f = vec(xq, funcs) axiv_nr = axiv_nonres(xq) tot = vec_f + axiv_nr return tot def jpsi_res(q): return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w) # calcs = zfit.run(total_test_tf(x_part)) test_q = np.linspace(x_min, x_max, 2000000) probs = total_f.pdf(test_q) calcs_test = zfit.run(probs) res_y = zfit.run(jpsi_res(test_q)) # In[9]: plt.clf() # plt.plot(x_part, calcs, '.') plt.plot(test_q, calcs_test, label = 'pdf') # plt.plot(test_q, res_y, label = 'res') plt.legend() plt.ylim(0.0, 4e-4) # plt.yscale('log') # plt.xlim(3080, 3110) plt.savefig('test.png') print(jpsi_width) # ## Adjust scaling of different parts # In[10]: # total_f.update_integration_options(draws_per_dim=10000000, mc_sampler=None) # inte = total_f.integrate(limits = (3000, 3200), norm_range=False) # print(zfit.run(inte)) # print(pdg["jpsi_BR"]/pdg["NR_BR"], zfit.run(inte)/pdg["NR_auc"]) # In[11]: # factor_jpsi = pdg["NR_auc"]*pdg["jpsi_BR"]/(pdg["NR_BR"]*pdg["jpsi_auc"]) # print(np.sqrt(factor_jpsi)) # factor_psi2s = pdg["NR_auc"]*pdg["psi2s_BR"]/(pdg["NR_BR"]*pdg["psi2s_auc"]) # print(np.sqrt(factor_psi2s)) # In[12]: # def _t_f(xq): # def jpsi_res(q): # return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w) # def psi2s_res(q): # return resonance(q, psi2s_m, psi2s_s, psi2s_p, psi2s_w) # def cusp(q): # return bifur_gauss(q, cusp_m, sig_L, sig_R, cusp_s) # funcs = psi2s_res(xq) + jpsi_res(xq) + cusp(xq) # vec_f = vec(xq, funcs) # axiv_nr = axiv_nonres(xq) # tot = vec_f + axiv_nr # return tot # def t_f(x): # probs = zfit.run(_t_f(ztf.constant(x))) # return probs # In[13]: print(36000*(1+ pdg["jpsi_BR"]/pdg["NR_BR"] + pdg["psi2s_BR"]/pdg["NR_BR"])) # In[14]: # start = time.time() # result, err = integrate.quad(lambda x: t_f(x), x_min, x_max, limit = 50) # print(result, "{0:.2f} %".format(err/result)) # print("Time:", time.time()-start) # # Sampling # ## One sample # In[ ]: nevents = 100 samp = total_f.sample(n=nevents) sam = samp.unstack_x() sam = zfit.run(sam) # print(sam) # In[ ]: with open("data/zfit_toys/test_toy.pkl", "wb") as f: pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL) # In[ ]: bins = int((x_max-x_min)/7) calcs = zfit.run(total_test_tf(samp)) plt.hist(sam, bins = bins, range = (x_min,x_max)) # plt.plot(sam, calcs, '.') # plt.plot(test_q, calcs_test) # plt.ylim(0, 0.0000007) # plt.xlim(3000, 3750) plt.savefig('test.png') # ## Toys # In[ ]: # sampler = total_f.create_sampler(n=nevents) # nll = zfit.loss.UnbinnedNLL(model=total_f, data=sampler, fit_range = (x_min, x_max)) # # for param in pdf.get_dependents(): # # param.set_value(initial_value) # sampler.resample(n=nevents) # # Randomise initial values # # for param in pdf.get_dependents(): # # param.set_value(random value here) # # Minimise the NLL # minimizer = zfit.minimize.MinuitMinimizer(verbosity = 10) # minimum = minimizer.minimize(nll) # # Fitting # In[ ]: # nll = zfit.loss.UnbinnedNLL(model=total_f, data=data, fit_range = (x_min, x_max)) # minimizer = zfit.minimize.MinuitMinimizer() # minimizer._use_tfgrad = False # result = minimizer.minimize(nll) # param_errors = result.error() # for var, errors in param_errors.items(): # print('{}: ^{{+{}}}_{{{}}}'.format(var.name, errors['upper'], errors['lower'])) # print("Function minimum:", result.fmin) # In[ ]: # samp = total_f.sample(n=nevents) # In[ ]: # sam = samp.unstack_x() # sam = zfit.run(sam) # bins = int((x_max-x_min)/7) # calcs = zfit.run(total_test_tf(samp)) # plt.clf() # plt.hist(sam, bins = bins, range = (x_min,x_max)) # # plt.plot(sam, calcs, '.') # # plt.plot(test_q, calcs_test) # # plt.ylim(0, 0.0000007) # # plt.xlim(3000, 3750) # plt.ylim(0,1000) # plt.savefig('test.png') # In[ ]: