{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Import" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "# os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"-1\"\n", "\n", "import numpy as np\n", "from pdg_const import pdg\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import pickle as pkl\n", "import sys\n", "import time\n", "from helperfunctions import display_time, prepare_plot\n", "import cmath as c\n", "import scipy.integrate as integrate\n", "from scipy.optimize import fminbound\n", "from array import array as arr\n", "import collections\n", "from itertools import compress\n", "import tensorflow as tf\n", "import zfit\n", "from zfit import ztf\n", "# from IPython.display import clear_output\n", "import os\n", "import tensorflow_probability as tfp\n", "tfd = tfp.distributions" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# chunksize = 10000\n", "# zfit.run.chunking.active = True\n", "# zfit.run.chunking.max_n_points = chunksize" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Build model and graphs\n", "## Create graphs" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def formfactor( q2, subscript): #returns real value\n", " #check if subscript is viable\n", "\n", " if subscript != \"0\" and subscript != \"+\" and subscript != \"T\":\n", " raise ValueError('Wrong subscript entered, choose either 0, + or T')\n", "\n", " #get constants\n", "\n", " mK = ztf.constant(pdg['Ks_M'])\n", " mbstar0 = ztf.constant(pdg[\"mbstar0\"])\n", " mbstar = ztf.constant(pdg[\"mbstar\"])\n", " b0 = ztf.constant(pdg[\"b0\"])\n", " bplus = ztf.constant(pdg[\"bplus\"])\n", " bT = ztf.constant(pdg[\"bT\"])\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", " mb = ztf.constant(pdg['bquark_M'])\n", " ms = ztf.constant(pdg['squark_M'])\n", " mB = ztf.constant(pdg['Bplus_M'])\n", "\n", " #N comes from derivation in paper\n", "\n", " N = 3\n", "\n", " #some helperfunctions\n", "\n", " tpos = (mB - mK)**2\n", " tzero = (mB + mK)*(ztf.sqrt(mB)-ztf.sqrt(mK))**2\n", "\n", " z_oben = ztf.sqrt(tpos - q2) - ztf.sqrt(tpos - tzero)\n", " z_unten = ztf.sqrt(tpos - q2) + ztf.sqrt(tpos - tzero)\n", " z = tf.divide(z_oben, z_unten)\n", "\n", " #calculate f0\n", "\n", " if subscript == \"0\":\n", " prefactor = 1/(1 - q2/(mbstar0**2))\n", " _sum = 0\n", "\n", " for i in range(N):\n", " _sum += b0[i]*(tf.pow(z,i))\n", "\n", " return tf.complex(prefactor * _sum, ztf.constant(0.0))\n", "\n", " #calculate f+ or fT\n", "\n", " else:\n", " prefactor = 1/(1 - q2/(mbstar**2))\n", " _sum = 0\n", "\n", " if subscript == \"T\":\n", " b = bT\n", " else:\n", " b = bplus\n", "\n", " for i in range(N):\n", " _sum += b[i] * (tf.pow(z, i) - ((-1)**(i-N)) * (i/N) * tf.pow(z, N))\n", "\n", " return tf.complex(prefactor * _sum, ztf.constant(0.0))\n", "\n", "def resonance(q, _mass, width, phase, scale):\n", "\n", " q2 = tf.pow(q, 2)\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", "\n", " p = 0.5 * ztf.sqrt(q2 - 4*(mmu**2))\n", "\n", " p0 = 0.5 * ztf.sqrt(_mass**2 - 4*mmu**2)\n", "\n", " gamma_j = tf.divide(p, q) * _mass * width / p0\n", "\n", " #Calculate the resonance\n", "\n", " _top = tf.complex(_mass * width, ztf.constant(0.0))\n", "\n", " _bottom = tf.complex(_mass**2 - q2, -_mass*gamma_j)\n", "\n", " com = _top/_bottom\n", "\n", " #Rotate by the phase\n", "\n", " r = ztf.to_complex(scale*tf.abs(com))\n", "\n", " _phase = tf.angle(com)\n", "\n", " _phase += phase\n", "\n", " com = r * tf.exp(tf.complex(ztf.constant(0.0), _phase))\n", "\n", " return com\n", "\n", "def bifur_gauss(q, mean, sigma_L, sigma_R, scale):\n", "\n", " _exp = tf.where(q < mean, ztf.exp(- tf.pow((q-mean),2) / (2 * sigma_L**2)), ztf.exp(- tf.pow((q-mean),2) / (2 * sigma_R**2)))\n", "\n", " #Scale so the total area under curve is 1 and the top of the cusp is continuous\n", "\n", " dgamma = scale*_exp/(ztf.sqrt(2*np.pi))*2*(sigma_L*sigma_R)/(sigma_L+sigma_R)\n", "\n", " com = ztf.complex(dgamma, ztf.constant(0.0))\n", "\n", " return com\n", "\n", "def axiv_nonres(q):\n", "\n", " GF = ztf.constant(pdg['GF'])\n", " alpha_ew = ztf.constant(pdg['alpha_ew'])\n", " Vtb = ztf.constant(pdg['Vtb'])\n", " Vts = ztf.constant(pdg['Vts'])\n", " C10eff = ztf.constant(pdg['C10eff'])\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", " mb = ztf.constant(pdg['bquark_M'])\n", " ms = ztf.constant(pdg['squark_M'])\n", " mK = ztf.constant(pdg['Ks_M'])\n", " mB = ztf.constant(pdg['Bplus_M'])\n", "\n", " q2 = tf.pow(q, 2)\n", "\n", " #Some helperfunctions\n", "\n", " beta = ztf.sqrt(tf.abs(1. - 4. * mmu**2. / q2))\n", "\n", " kabs = ztf.sqrt(mB**2. +tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2. * (mB**2. * mK**2. + mK**2. * q2 + mB**2. * q2) / mB**2.)\n", "\n", " #prefactor in front of whole bracket\n", "\n", " prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2. * kabs * beta / (128. * np.pi**5.)\n", "\n", " #left term in bracket\n", "\n", " bracket_left = 2./3. * kabs**2. * beta**2. *tf.abs(tf.complex(C10eff, ztf.constant(0.0))*formfactor(q2, \"+\"))**2.\n", "\n", " #middle term in bracket\n", "\n", " _top = 4. * mmu**2. * (mB**2. - mK**2.) * (mB**2. - mK**2.)\n", "\n", " _under = q2 * mB**2.\n", "\n", " bracket_middle = _top/_under *tf.pow(tf.abs(tf.complex(C10eff, ztf.constant(0.0)) * formfactor(q2, \"0\")), 2)\n", "\n", " #Note sqrt(q2) comes from derivation as we use q2 and plot q\n", "\n", " return prefactor1 * (bracket_left + bracket_middle) * 2 *ztf.sqrt(q2)\n", "\n", "def vec(q, funcs):\n", " \n", " q2 = tf.pow(q, 2)\n", "\n", " GF = ztf.constant(pdg['GF'])\n", " alpha_ew = ztf.constant(pdg['alpha_ew'])\n", " Vtb = ztf.constant(pdg['Vtb'])\n", " Vts = ztf.constant(pdg['Vts'])\n", " C7eff = ztf.constant(pdg['C7eff'])\n", "\n", " mmu = ztf.constant(pdg['muon_M'])\n", " mb = ztf.constant(pdg['bquark_M'])\n", " ms = ztf.constant(pdg['squark_M'])\n", " mK = ztf.constant(pdg['Ks_M'])\n", " mB = ztf.constant(pdg['Bplus_M'])\n", "\n", " #Some helperfunctions\n", "\n", " beta = ztf.sqrt(tf.abs(1. - 4. * mmu**2. / q2))\n", "\n", " kabs = ztf.sqrt(mB**2. + tf.pow(q2, 2)/mB**2. + mK**4./mB**2. - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2)\n", "\n", " #prefactor in front of whole bracket\n", "\n", " prefactor1 = GF**2. *alpha_ew**2. * (tf.abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.)\n", "\n", " #right term in bracket\n", "\n", " prefactor2 = kabs**2 * (1. - 1./3. * beta**2)\n", "\n", " abs_bracket = tf.abs(c9eff(q, funcs) * formfactor(q2, \"+\") + tf.complex(2.0 * C7eff * (mb + ms)/(mB + mK), ztf.constant(0.0)) * formfactor(q2, \"T\"))**2\n", "\n", " bracket_right = prefactor2 * abs_bracket\n", "\n", " #Note sqrt(q2) comes from derivation as we use q2 and plot q\n", "\n", " return prefactor1 * bracket_right * 2 * ztf.sqrt(q2)\n", "\n", "def c9eff(q, funcs):\n", "\n", " C9eff_nr = tf.complex(ztf.constant(pdg['C9eff']), ztf.constant(0.0))\n", "\n", " c9 = C9eff_nr\n", "\n", " c9 = c9 + funcs\n", "\n", " return c9" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def G(y):\n", " \n", " def inner_rect_bracket(q):\n", " return tf.log(ztf.to_complex((1+tf.sqrt(q))/(1-tf.sqrt(q)))-tf.complex(ztf.constant(0), -1*ztf.constant(np.pi))) \n", " \n", " def inner_right(q):\n", " return ztf.to_complex(2 * tf.atan(1/tf.sqrt(tf.math.real(-q))))\n", " \n", " big_bracket = tf.where(tf.math.real(y) > ztf.constant(0.0), inner_rect_bracket(y), inner_right(y))\n", " \n", " return ztf.to_complex(tf.sqrt(tf.abs(y))) * big_bracket\n", "\n", "def h_S(m, q):\n", " \n", " return ztf.to_complex(2) - G(ztf.to_complex(1) - ztf.to_complex(4*tf.pow(m, 2)) / ztf.to_complex(tf.pow(q, 2)))\n", "\n", "def h_P(m, q):\n", " \n", " return ztf.to_complex(2/3) + (ztf.to_complex(1) - ztf.to_complex(4*tf.pow(m, 2)) / ztf.to_complex(tf.pow(q, 2))) * h_S(m,q)\n", "\n", "def two_p_ccbar(mD, m_D_bar, m_D_star, q):\n", " \n", " \n", " #Load constants\n", " nu_D_bar = ztf.to_complex(pdg[\"nu_D_bar\"])\n", " nu_D = ztf.to_complex(pdg[\"nu_D\"])\n", " nu_D_star = ztf.to_complex(pdg[\"nu_D_star\"])\n", " \n", " phase_D_bar = ztf.to_complex(pdg[\"phase_D_bar\"])\n", " phase_D = ztf.to_complex(pdg[\"phase_D\"])\n", " phase_D_star = ztf.to_complex(pdg[\"phase_D_star\"])\n", " \n", " #Calculation\n", " left_part = nu_D_bar * tf.exp(tf.complex(ztf.constant(0.0), phase_D_bar)) * h_S(m_D_bar, q) \n", " \n", " right_part_D = nu_D * tf.exp(tf.complex(ztf.constant(0.0), phase_D)) * h_P(m_D, q) \n", " \n", " right_part_D_star = nu_D_star * tf.exp(tf.complex(ztf.constant(0.0), phase_D_star)) * h_P(m_D_star, q) \n", "\n", " return left_part + right_part_D + right_part_D_star" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## C_q,qbar constraint" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# r = rho_scale * rho_width/rho_mass * np.cos(rho_phase)*(1-np.tan(rho_phase)*rho_width/rho_mass)\n", "# o = omega_scale*np.cos(omega_phase)*omega_width/omega_mass\n", "# p = phi_scale*np.cos(phi_phase)*phi_width/phi_mass\n", "\n", "# # phi_s = np.linspace(-500, 5000, 100000)\n", "\n", "# # p_ = phi_s*np.cos(phi_phase)*phi_width/phi_mass\n", "\n", "# # p_y = r+o+p_\n", "\n", "# # plt.plot(phi_s, p_y)\n", "\n", "# print(r + o + p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Build pdf" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "class total_pdf(zfit.pdf.ZPDF):\n", " _N_OBS = 1 # dimension, can be omitted\n", " _PARAMS = ['rho_mass', 'rho_scale', 'rho_phase', 'rho_width',\n", " 'jpsi_mass', 'jpsi_scale', 'jpsi_phase', 'jpsi_width',\n", " 'psi2s_mass', 'psi2s_scale', 'psi2s_phase', 'psi2s_width',\n", " 'p3770_mass', 'p3770_scale', 'p3770_phase', 'p3770_width',\n", " 'p4040_mass', 'p4040_scale', 'p4040_phase', 'p4040_width',\n", " 'p4160_mass', 'p4160_scale', 'p4160_phase', 'p4160_width',\n", " 'p4415_mass', 'p4415_scale', 'p4415_phase', 'p4415_width',\n", " 'omega_mass', 'omega_scale', 'omega_phase', 'omega_width',\n", " 'phi_mass', 'phi_scale', 'phi_phase', 'phi_width',\n", " 'Dbar_mass', 'Dbar_scale', 'Dbar_phase',\n", " 'DDstar_mass', 'DDstar_scale', 'DDstar_phase',\n", " 'tau_mass', 'C_tt']\n", "# the name of the parameters\n", "\n", " def _unnormalized_pdf(self, x):\n", " \n", " x = x.unstack_x()\n", " \n", " def rho_res(q):\n", " return resonance(q, _mass = self.params['rho_mass'], scale = self.params['rho_scale'],\n", " phase = self.params['rho_phase'], width = self.params['rho_width'])\n", " \n", " def omega_res(q):\n", " return resonance(q, _mass = self.params['omega_mass'], scale = self.params['omega_scale'],\n", " phase = self.params['omega_phase'], width = self.params['omega_width'])\n", " \n", " def phi_res(q):\n", " return resonance(q, _mass = self.params['phi_mass'], scale = self.params['phi_scale'],\n", " phase = self.params['phi_phase'], width = self.params['phi_width'])\n", "\n", " def jpsi_res(q):\n", " return resonance(q, _mass = self.params['jpsi_mass'], scale = self.params['jpsi_scale'],\n", " phase = self.params['jpsi_phase'], width = self.params['jpsi_width'])\n", "\n", " def psi2s_res(q):\n", " return resonance(q, _mass = self.params['psi2s_mass'], scale = self.params['psi2s_scale'],\n", " phase = self.params['psi2s_phase'], width = self.params['psi2s_width'])\n", " \n", " def p3770_res(q):\n", " return resonance(q, _mass = self.params['p3770_mass'], scale = self.params['p3770_scale'],\n", " phase = self.params['p3770_phase'], width = self.params['p3770_width'])\n", " \n", " def p4040_res(q):\n", " return resonance(q, _mass = self.params['p4040_mass'], scale = self.params['p4040_scale'],\n", " phase = self.params['p4040_phase'], width = self.params['p4040_width'])\n", " \n", " def p4160_res(q):\n", " return resonance(q, _mass = self.params['p4160_mass'], scale = self.params['p4160_scale'],\n", " phase = self.params['p4160_phase'], width = self.params['p4160_width'])\n", " \n", " def p4415_res(q):\n", " return resonance(q, _mass = self.params['p4415_mass'], scale = self.params['p4415_scale'],\n", " phase = self.params['p4415_phase'], width = self.params['p4415_width'])\n", " \n", " def P2_D(q):\n", " Dbar_contrib = ztf.to_complex(self.params['Dbar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['Dbar_phase']))*ztf.to_complex(h_S(self.params['Dbar_mass'], q))\n", " DDstar_contrib = ztf.to_complex(self.params['DDstar_scale'])*tf.exp(tf.complex(ztf.constant(0.0), self.params['DDstar_phase']))*ztf.to_complex(h_P(self.params['DDstar_mass'], q))\n", " return Dbar_contrib + DDstar_contrib\n", " \n", " def ttau_cusp(q):\n", " return ztf.to_complex(self.params['C_tt'])*(ztf.to_complex((h_S(self.params['tau_mass'], q))) - ztf.to_complex(h_P(self.params['tau_mass'], q)))\n", " \n", "\n", " funcs = rho_res(x) + omega_res(x) + phi_res(x) + jpsi_res(x) + psi2s_res(x) + p3770_res(x) + p4040_res(x)+ p4160_res(x) + p4415_res(x) + P2_D(x) + ttau_cusp(x)\n", "\n", " vec_f = vec(x, funcs)\n", "\n", " axiv_nr = axiv_nonres(x)\n", "\n", " tot = vec_f + axiv_nr\n", "\n", " return tot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x_min = 2*pdg['muon_M']\n", "x_max = (pdg[\"Bplus_M\"]-pdg[\"Ks_M\"]-0.1)\n", "\n", "obs = zfit.Space('q', limits = (x_min, x_max))\n", "\n", "# with open(r\"./data/slim_points/slim_points_toy_0_range({0}-{1}).pkl\".format(int(x_min), int(x_max)), \"rb\") as input_file:\n", "# part_set = pkl.load(input_file)\n", "\n", "# x_part = part_set['x_part']\n", "\n", "# x_part = x_part.astype('float64')\n", "\n", "# data = zfit.data.Data.from_numpy(array=x_part, obs=obs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup parameters" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#rho\n", "\n", "rho_mass, rho_width, rho_phase, rho_scale = pdg[\"rho\"]\n", "\n", "rho_m = zfit.Parameter(\"rho_m\", ztf.constant(rho_mass), floating = False) #lower_limit = rho_mass - rho_width,\n", "# upper_limit = rho_mass + rho_width)\n", "rho_w = zfit.Parameter(\"rho_w\", ztf.constant(rho_width), floating = False)\n", "rho_p = zfit.Parameter(\"rho_p\", ztf.constant(rho_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "rho_s = zfit.Parameter(\"rho_s\", ztf.constant(rho_scale), lower_limit=rho_scale-np.sqrt(rho_scale), upper_limit=rho_scale+np.sqrt(rho_scale))\n", "\n", "#omega\n", "\n", "omega_mass, omega_width, omega_phase, omega_scale = pdg[\"omega\"]\n", "\n", "omega_m = zfit.Parameter(\"omega_m\", ztf.constant(omega_mass), floating = False)\n", "omega_w = zfit.Parameter(\"omega_w\", ztf.constant(omega_width), floating = False)\n", "omega_p = zfit.Parameter(\"omega_p\", ztf.constant(omega_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "omega_s = zfit.Parameter(\"omega_s\", ztf.constant(omega_scale), lower_limit=omega_scale-np.sqrt(omega_scale), upper_limit=omega_scale+np.sqrt(omega_scale))\n", "\n", "\n", "#phi\n", "\n", "phi_mass, phi_width, phi_phase, phi_scale = pdg[\"phi\"]\n", "\n", "phi_m = zfit.Parameter(\"phi_m\", ztf.constant(phi_mass), floating = False)\n", "phi_w = zfit.Parameter(\"phi_w\", ztf.constant(phi_width), floating = False)\n", "phi_p = zfit.Parameter(\"phi_p\", ztf.constant(phi_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "phi_s = zfit.Parameter(\"phi_s\", ztf.constant(phi_scale), lower_limit=phi_scale-np.sqrt(phi_scale), upper_limit=phi_scale+np.sqrt(phi_scale))\n", "\n", "#jpsi\n", "\n", "jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg[\"jpsi\"]\n", "# jpsi_scale *= pdg[\"factor_jpsi\"]\n", "\n", "jpsi_m = zfit.Parameter(\"jpsi_m\", ztf.constant(jpsi_mass), floating = False)\n", "jpsi_w = zfit.Parameter(\"jpsi_w\", ztf.constant(jpsi_width), floating = False)\n", "jpsi_p = zfit.Parameter(\"jpsi_p\", ztf.constant(jpsi_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "jpsi_s = zfit.Parameter(\"jpsi_s\", ztf.constant(jpsi_scale), lower_limit=jpsi_scale-np.sqrt(jpsi_scale), upper_limit=jpsi_scale+np.sqrt(jpsi_scale))\n", "\n", "#psi2s\n", "\n", "psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg[\"psi2s\"]\n", "\n", "psi2s_m = zfit.Parameter(\"psi2s_m\", ztf.constant(psi2s_mass), floating = False)\n", "psi2s_w = zfit.Parameter(\"psi2s_w\", ztf.constant(psi2s_width), floating = False)\n", "psi2s_p = zfit.Parameter(\"psi2s_p\", ztf.constant(psi2s_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "psi2s_s = zfit.Parameter(\"psi2s_s\", ztf.constant(psi2s_scale), lower_limit=psi2s_scale-np.sqrt(psi2s_scale), upper_limit=psi2s_scale+np.sqrt(psi2s_scale))\n", "\n", "#psi(3770)\n", "\n", "p3770_mass, p3770_width, p3770_phase, p3770_scale = pdg[\"p3770\"]\n", "\n", "p3770_m = zfit.Parameter(\"p3770_m\", ztf.constant(p3770_mass), floating = False)\n", "p3770_w = zfit.Parameter(\"p3770_w\", ztf.constant(p3770_width), floating = False)\n", "p3770_p = zfit.Parameter(\"p3770_p\", ztf.constant(p3770_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p3770_s = zfit.Parameter(\"p3770_s\", ztf.constant(p3770_scale), lower_limit=p3770_scale-np.sqrt(p3770_scale), upper_limit=p3770_scale+np.sqrt(p3770_scale))\n", "\n", "#psi(4040)\n", "\n", "p4040_mass, p4040_width, p4040_phase, p4040_scale = pdg[\"p4040\"]\n", "\n", "p4040_m = zfit.Parameter(\"p4040_m\", ztf.constant(p4040_mass), floating = False)\n", "p4040_w = zfit.Parameter(\"p4040_w\", ztf.constant(p4040_width), floating = False)\n", "p4040_p = zfit.Parameter(\"p4040_p\", ztf.constant(p4040_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p4040_s = zfit.Parameter(\"p4040_s\", ztf.constant(p4040_scale), lower_limit=p4040_scale-np.sqrt(p4040_scale), upper_limit=p4040_scale+np.sqrt(p4040_scale))\n", "\n", "#psi(4160)\n", "\n", "p4160_mass, p4160_width, p4160_phase, p4160_scale = pdg[\"p4160\"]\n", "\n", "p4160_m = zfit.Parameter(\"p4160_m\", ztf.constant(p4160_mass), floating = False)\n", "p4160_w = zfit.Parameter(\"p4160_w\", ztf.constant(p4160_width), floating = False)\n", "p4160_p = zfit.Parameter(\"p4160_p\", ztf.constant(p4160_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p4160_s = zfit.Parameter(\"p4160_s\", ztf.constant(p4160_scale), lower_limit=p4160_scale-np.sqrt(p4160_scale), upper_limit=p4160_scale+np.sqrt(p4160_scale))\n", "\n", "#psi(4415)\n", "\n", "p4415_mass, p4415_width, p4415_phase, p4415_scale = pdg[\"p4415\"]\n", "\n", "p4415_m = zfit.Parameter(\"p4415_m\", ztf.constant(p4415_mass), floating = False)\n", "p4415_w = zfit.Parameter(\"p4415_w\", ztf.constant(p4415_width), floating = False)\n", "p4415_p = zfit.Parameter(\"p4415_p\", ztf.constant(p4415_phase), lower_limit=-2*np.pi, upper_limit=2*np.pi)\n", "p4415_s = zfit.Parameter(\"p4415_s\", ztf.constant(p4415_scale), lower_limit=p4415_scale-np.sqrt(p4415_scale), upper_limit=p4415_scale+np.sqrt(p4415_scale))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Dynamic generation of 2 particle contribution" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "_0 = jpsi_scale*np.cos(jpsi_phase)*jpsi_width/jpsi_mass**3 + psi2s_scale*np.cos(psi2s_phase)*psi2s_width/psi2s_mass**3\n", "_1 = p3770_scale*np.cos(p3770_phase)*p3770_width/p3770_mass**3 + p4040_scale*np.cos(p4040_phase)*p4040_width/p4040_mass**3\n", "_2 = p4160_scale*np.cos(p4160_phase)*p4160_width/p4160_mass**3 + p4415_scale*np.cos(p4415_phase)*p4415_width/p4415_mass**3\n", "\n", "C_pert = np.random.uniform(0.03, 0.1)\n", "# c_pert = 0.1\n", "m_c = 1300\n", "\n", "cDDstar_phase = 10\n", "\n", "\n", "DDstar_eta = 0\n", "Dbar_phase = np.random.uniform(0.0, 2*np.pi)\n", "DDstar_phase = np.random.uniform(0.0, 2*np.pi)\n", "DDstar_mass = pdg['D0_M']\n", "\n", "if Dbar_phase < np.pi:\n", " Dbar_phase = 0.0\n", "else:\n", " Dbar_phase = np.pi\n", "\n", "R = (C_pert/(m_c**2) - ((_0 + _1 + _2)))\n", "\n", "Dbar_mass = (pdg['D0_M']+pdg['Dst_M'])/2\n", "\n", "Dbar_eta = R/np.cos(Dbar_phase)*(6*Dbar_mass**2)\n", "\n", "# print(np.cos(Dbar_phase))\n", "\n", "# cDDstar_phase = R_*10*DDstar_mass**2/DDstar_eta\n", "\n", "\n", "# print(Dbar_eta)\n", "\n", "\n", "Dbar_s = zfit.Parameter(\"Dbar_s\", ztf.constant(Dbar_eta), lower_limit=-1.464, upper_limit=1.464)\n", "Dbar_m = zfit.Parameter(\"Dbar_m\", ztf.constant(Dbar_mass), floating = False)\n", "Dbar_p = zfit.Parameter(\"Dbar_p\", ztf.constant(Dbar_phase), floating = False)\n", "DDstar_s = zfit.Parameter(\"DDstar_s\", ztf.constant(DDstar_eta), floating = False)\n", "DDstar_m = zfit.Parameter(\"DDstar_m\", ztf.constant(DDstar_mass), floating = False)\n", "DDstar_p = zfit.Parameter(\"DDstar_p\", ztf.constant(DDstar_phase), floating = False)\n", "\n", "Dbar_s.set_value(0.0)\n", "DDstar_s.set_value(0.0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tau parameters" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tau_m = zfit.Parameter(\"tau_m\", ztf.constant(pdg['tau_M']), floating = False)\n", "Ctt = zfit.Parameter(\"Ctt\", ztf.constant(0.0), lower_limit=-0.5, upper_limit=0.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup pdf" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "total_f = total_pdf(obs=obs, jpsi_mass = jpsi_m, jpsi_scale = jpsi_s, jpsi_phase = jpsi_p, jpsi_width = jpsi_w,\n", " psi2s_mass = psi2s_m, psi2s_scale = psi2s_s, psi2s_phase = psi2s_p, psi2s_width = psi2s_w,\n", " p3770_mass = p3770_m, p3770_scale = p3770_s, p3770_phase = p3770_p, p3770_width = p3770_w,\n", " p4040_mass = p4040_m, p4040_scale = p4040_s, p4040_phase = p4040_p, p4040_width = p4040_w,\n", " p4160_mass = p4160_m, p4160_scale = p4160_s, p4160_phase = p4160_p, p4160_width = p4160_w,\n", " p4415_mass = p4415_m, p4415_scale = p4415_s, p4415_phase = p4415_p, p4415_width = p4415_w,\n", " rho_mass = rho_m, rho_scale = rho_s, rho_phase = rho_p, rho_width = rho_w,\n", " omega_mass = omega_m, omega_scale = omega_s, omega_phase = omega_p, omega_width = omega_w,\n", " phi_mass = phi_m, phi_scale = phi_s, phi_phase = phi_p, phi_width = phi_w,\n", " DDstar_mass = DDstar_m, DDstar_scale = DDstar_s, DDstar_phase = DDstar_p,\n", " Dbar_mass = Dbar_m, Dbar_scale = Dbar_s, Dbar_phase = Dbar_p,\n", " tau_mass = tau_m, C_tt = Ctt)\n", " \n", " \n", "# print(total_pdf.obs)\n", "\n", "# print(calcs_test)\n", "\n", "# for param in total_f.get_dependents():\n", "# print(zfit.run(param))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test if graphs actually work and compute values" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# def total_test_tf(xq):\n", "\n", "# def jpsi_res(q):\n", "# return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w)\n", "\n", "# def psi2s_res(q):\n", "# return resonance(q, psi2s_m, psi2s_s, psi2s_p, psi2s_w)\n", "\n", "# def cusp(q):\n", "# return bifur_gauss(q, cusp_m, sig_L, sig_R, cusp_s)\n", "\n", "# funcs = jpsi_res(xq) + psi2s_res(xq) + cusp(xq)\n", "\n", "# vec_f = vec(xq, funcs)\n", "\n", "# axiv_nr = axiv_nonres(xq)\n", "\n", "# tot = vec_f + axiv_nr\n", " \n", "# return tot\n", "\n", "def jpsi_res(q):\n", " return resonance(q, jpsi_m, jpsi_s, jpsi_p, jpsi_w)\n", "\n", "# calcs = zfit.run(total_test_tf(x_part))\n", "\n", "test_q = np.linspace(x_min, x_max, 200000)\n", "\n", "probs = total_f.pdf(test_q)\n", "\n", "calcs_test = zfit.run(probs)\n", "res_y = zfit.run(jpsi_res(test_q))\n", "f0_y = zfit.run(formfactor(test_q,\"0\"))\n", "fplus_y = zfit.run(formfactor(test_q,\"+\"))\n", "fT_y = zfit.run(formfactor(test_q,\"T\"))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.clf()\n", "# plt.plot(x_part, calcs, '.')\n", "plt.plot(test_q, calcs_test, label = 'pdf')\n", "# plt.plot(test_q, f0_y, label = '0')\n", "# plt.plot(test_q, fT_y, label = 'T')\n", "# plt.plot(test_q, fplus_y, label = '+')\n", "# plt.plot(test_q, res_y, label = 'res')\n", "plt.legend()\n", "plt.ylim(0.0, 6e-6)\n", "# plt.yscale('log')\n", "# plt.xlim(770, 785)\n", "plt.savefig('test.png')\n", "# print(jpsi_width)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "\n", "# probs = mixture.prob(test_q)\n", "# probs_np = zfit.run(probs)\n", "# probs_np *= np.max(calcs_test) / np.max(probs_np)\n", "# plt.figure()\n", "# plt.semilogy(test_q, probs_np,label=\"importance sampling\")\n", "# plt.semilogy(test_q, calcs_test, label = 'pdf')\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 0.213/(0.00133+0.213+0.015)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Adjust scaling of different parts" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "total_f.update_integration_options(draws_per_dim=200000, mc_sampler=None)\n", "# inte = total_f.integrate(limits = (2000, x_max), norm_range=False)\n", "# inte_fl = zfit.run(inte)\n", "# print(inte_fl)\n", "# print(pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"], inte_fl*pdg[\"psi2s_auc\"]/pdg[\"NR_auc\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# # print(\"jpsi:\", inte_fl)\n", "# # print(\"Increase am by factor:\", np.sqrt(pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "# # print(\"New amp:\", pdg[\"jpsi\"][3]*np.sqrt(pdg[\"jpsi_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "\n", "# # print(\"psi2s:\", inte_fl)\n", "# # print(\"Increase am by factor:\", np.sqrt(pdg[\"psi2s_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "# # print(\"New amp:\", pdg[\"psi2s\"][3]*np.sqrt(pdg[\"psi2s_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "\n", "# name = \"phi\"\n", "\n", "# print(name+\":\", inte_fl)\n", "# print(\"Increase am by factor:\", np.sqrt(pdg[name+\"_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "# print(\"New amp:\", pdg[name][3]*np.sqrt(pdg[name+\"_BR\"]/pdg[\"NR_BR\"]*pdg[\"NR_auc\"]/inte_fl))\n", "\n", "\n", "# # print(x_min)\n", "# # print(x_max)\n", "# # # total_f.update_integration_options(draws_per_dim=2000000, mc_sampler=None)\n", "# # total_f.update_integration_options(mc_sampler=lambda dim, num_results,\n", "# # dtype: tf.random_uniform(maxval=1., shape=(num_results, dim), dtype=dtype),\n", "# # draws_per_dim=1000000)\n", "# # # _ = []\n", "\n", "# # # for i in range(10):\n", "\n", "# # # inte = total_f.integrate(limits = (x_min, x_max))\n", "# # # inte_fl = zfit.run(inte)\n", "# # # print(inte_fl)\n", "# # # _.append(inte_fl)\n", "\n", "# # # print(\"mean:\", np.mean(_))\n", "\n", "# # _ = time.time()\n", "\n", "# # inte = total_f.integrate(limits = (x_min, x_max))\n", "# # inte_fl = zfit.run(inte)\n", "# # print(inte_fl)\n", "# # print(\"Time taken: {}\".format(display_time(int(time.time() - _))))\n", "\n", "# print(pdg['NR_BR']/pdg['NR_auc']*inte_fl)\n", "# print(0.25**2*4.2/1000)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Sampling\n", "## Toys" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", " \n", "# print(list_of_borders[:9])\n", "# print(list_of_borders[-9:])\n", "\n", "\n", "class UniformSampleAndWeights(zfit.util.execution.SessionHolderMixin):\n", " def __call__(self, limits, dtype, n_to_produce):\n", " # n_to_produce = tf.cast(n_to_produce, dtype=tf.int32)\n", " low, high = limits.limit1d\n", " low = tf.cast(low, dtype=dtype)\n", " high = tf.cast(high, dtype=dtype)\n", "# uniform = tfd.Uniform(low=low, high=high)\n", "# uniformjpsi = tfd.Uniform(low=tf.constant(3080, dtype=dtype), high=tf.constant(3112, dtype=dtype))\n", "# uniformpsi2s = tfd.Uniform(low=tf.constant(3670, dtype=dtype), high=tf.constant(3702, dtype=dtype))\n", "\n", "# list_of_borders = []\n", "# _p = []\n", "# splits = 10\n", "\n", "# _ = np.linspace(x_min, x_max, splits)\n", "\n", "# for i in range(splits):\n", "# list_of_borders.append(tf.constant(_[i], dtype=dtype))\n", "# _p.append(tf.constant(1/splits, dtype=dtype))\n", " \n", "# mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=_p[:(splits-1)]),\n", "# components_distribution=tfd.Uniform(low=list_of_borders[:(splits-1)], \n", "# high=list_of_borders[-(splits-1):]))\n", " mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.05, dtype=dtype),\n", " tf.constant(0.93, dtype=dtype),\n", " tf.constant(0.05, dtype=dtype),\n", " tf.constant(0.065, dtype=dtype),\n", " tf.constant(0.04, dtype=dtype),\n", " tf.constant(0.05, dtype=dtype)]),\n", " components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", " tf.constant(3090, dtype=dtype),\n", " tf.constant(3681, dtype=dtype), \n", " tf.constant(3070, dtype=dtype),\n", " tf.constant(1000, dtype=dtype),\n", " tf.constant(3660, dtype=dtype)], \n", " high=[tf.constant(x_max, dtype=dtype),\n", " tf.constant(3102, dtype=dtype), \n", " tf.constant(3691, dtype=dtype),\n", " tf.constant(3110, dtype=dtype),\n", " tf.constant(1040, dtype=dtype),\n", " tf.constant(3710, dtype=dtype)]))\n", "# dtype = tf.float64\n", "# mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.04, dtype=dtype),\n", "# tf.constant(0.90, dtype=dtype),\n", "# tf.constant(0.02, dtype=dtype),\n", "# tf.constant(0.07, dtype=dtype),\n", "# tf.constant(0.02, dtype=dtype)]),\n", "# components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", "# tf.constant(3089, dtype=dtype),\n", "# tf.constant(3103, dtype=dtype), \n", "# tf.constant(3681, dtype=dtype),\n", "# tf.constant(3691, dtype=dtype)], \n", "# high=[tf.constant(3089, dtype=dtype),\n", "# tf.constant(3103, dtype=dtype), \n", "# tf.constant(3681, dtype=dtype),\n", "# tf.constant(3691, dtype=dtype), \n", "# tf.constant(x_max, dtype=dtype)]))\n", "# mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype))\n", "# sample = tf.random.uniform((n_to_produce, 1), dtype=dtype)\n", " sample = mixture.sample((n_to_produce, 1))\n", "# sample = tf.random.uniform((n_to_produce, 1), dtype=dtype)\n", " weights = mixture.prob(sample)[:,0]\n", "# weights = tf.broadcast_to(tf.constant(1., dtype=dtype), shape=(n_to_produce,))\n", " # sample = tf.expand_dims(sample, axis=-1)\n", "# print(sample, weights)\n", " \n", "# weights = tf.ones(shape=(n_to_produce,), dtype=dtype)\n", " weights_max = None\n", " thresholds = tf.random_uniform(shape=(n_to_produce,), dtype=dtype)\n", " return sample, thresholds, weights, weights_max, n_to_produce" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "total_f._sample_and_weights = UniformSampleAndWeights" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 0.00133/(0.00133+0.213+0.015)*(x_max-3750)/(x_max-x_min)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# zfit.settings.set_verbosity(10)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "# # zfit.run.numeric_checks = False \n", "\n", "# nr_of_toys = 1\n", "# nevents = int(pdg[\"number_of_decays\"])\n", "# nevents = pdg[\"number_of_decays\"]\n", "# event_stack = 1000000\n", "# # zfit.settings.set_verbosity(10)\n", "# calls = int(nevents/event_stack + 1)\n", "\n", "# total_samp = []\n", "\n", "# start = time.time()\n", "\n", "# sampler = total_f.create_sampler(n=event_stack)\n", "\n", "# for toy in range(nr_of_toys):\n", " \n", "# dirName = 'data/zfit_toys/toy_{0}'.format(toy)\n", " \n", "# if not os.path.exists(dirName):\n", "# os.mkdir(dirName)\n", "# print(\"Directory \" , dirName , \" Created \")\n", "\n", "# for call in range(calls):\n", "\n", "# sampler.resample(n=event_stack)\n", "# s = sampler.unstack_x()\n", "# sam = zfit.run(s)\n", "# # clear_output(wait=True)\n", "\n", "# c = call + 1\n", " \n", "# print(\"{0}/{1} of Toy {2}/{3}\".format(c, calls, toy+1, nr_of_toys))\n", "# print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", "# print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/(c+calls*(toy))*((nr_of_toys-toy)*calls-c)))))\n", "\n", "# with open(\"data/zfit_toys/toy_{0}/{1}.pkl\".format(toy, call), \"wb\") as f:\n", "# pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# with open(r\"data/zfit_toys/toy_0/0.pkl\", \"rb\") as input_file:\n", "# sam = pkl.load(input_file)\n", "# print(sam[:10])\n", "\n", "# with open(r\"data/zfit_toys/toy_0/1.pkl\", \"rb\") as input_file:\n", "# sam2 = pkl.load(input_file)\n", "# print(sam2[:10])\n", "\n", "# print(np.sum(sam-sam2))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# print(\"Time to generate full toy: {} s\".format(int(time.time()-start)))\n", "\n", "# total_samp = []\n", "\n", "# for call in range(calls):\n", "# with open(r\"data/zfit_toys/toy_0/{}.pkl\".format(call), \"rb\") as input_file:\n", "# sam = pkl.load(input_file)\n", "# total_samp = np.append(total_samp, sam)\n", "\n", "# total_samp = total_samp.astype('float64')\n", "\n", "# data2 = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs)\n", "\n", "# data3 = zfit.data.Data.from_numpy(array=total_samp, obs=obs)\n", "\n", "# print(total_samp[:nevents].shape)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# plt.clf()\n", "\n", "# bins = int((x_max-x_min)/7)\n", "\n", "# # calcs = zfit.run(total_test_tf(samp))\n", "# print(total_samp[:nevents].shape)\n", "\n", "# plt.hist(total_samp[:nevents], bins = bins, range = (x_min,x_max), label = 'data')\n", "# # plt.plot(test_q, calcs_test*nevents , label = 'pdf')\n", "\n", "# # plt.plot(sam, calcs, '.')\n", "# # plt.plot(test_q, calcs_test)\n", "# # plt.yscale('log')\n", "# plt.ylim(0, 200)\n", "# # plt.xlim(3080, 3110)\n", "\n", "# plt.legend()\n", "\n", "# plt.savefig('test2.png')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# sampler = total_f.create_sampler(n=nevents)\n", "# nll = zfit.loss.UnbinnedNLL(model=total_f, data=sampler, fit_range = (x_min, x_max))\n", "\n", "# # for param in pdf.get_dependents():\n", "# # param.set_value(initial_value)\n", "\n", "# sampler.resample(n=nevents)\n", "\n", "# # Randomise initial values\n", "# # for param in pdf.get_dependents():\n", "# # param.set_value(random value here)\n", "\n", "# # Minimise the NLL\n", "# minimizer = zfit.minimize.MinuitMinimizer(verbosity = 10)\n", "# minimum = minimizer.minimize(nll)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# jpsi_width" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# plt.hist(sample, weights=1 / prob(sample))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Fitting" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# start = time.time()\n", "\n", "# for param in total_f.get_dependents():\n", "# param.randomize()\n", " \n", "# # for param in total_f.get_dependents():\n", "# # print(zfit.run(param))\n", " \n", "# nll = zfit.loss.UnbinnedNLL(model=total_f, data=data2, fit_range = (x_min, x_max))\n", "\n", "# minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5)\n", "# # minimizer._use_tfgrad = False\n", "# result = minimizer.minimize(nll)\n", "\n", "# # param_errors = result.error()\n", "\n", "# # for var, errors in param_errors.items():\n", "# # print('{}: ^{{+{}}}_{{{}}}'.format(var.name, errors['upper'], errors['lower']))\n", "\n", "# print(\"Function minimum:\", result.fmin)\n", "# # print(\"Results:\", result.params)\n", "# print(\"Hesse errors:\", result.hesse())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# print(\"Time taken for fitting: {}\".format(display_time(int(time.time()-start))))\n", "\n", "# # probs = total_f.pdf(test_q)\n", "\n", "# calcs_test = zfit.run(probs)\n", "# res_y = zfit.run(jpsi_res(test_q))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# plt.clf()\n", "# # plt.plot(x_part, calcs, '.')\n", "# plt.plot(test_q, calcs_test, label = 'pdf')\n", "# # plt.plot(test_q, res_y, label = 'res')\n", "# plt.legend()\n", "# plt.ylim(0.0, 10e-6)\n", "# # plt.yscale('log')\n", "# # plt.xlim(3080, 3110)\n", "# plt.savefig('test3.png')\n", "# # print(jpsi_width)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# _tot = 4.37e-7+6.02e-5+4.97e-6\n", "# _probs = []\n", "# _probs.append(6.02e-5/_tot)\n", "# _probs.append(4.97e-6/_tot)\n", "# _probs.append(4.37e-7/_tot)\n", "# print(_probs)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# dtype = 'float64'\n", "# # mixture = tfd.Uniform(tf.constant(x_min, dtype=dtype), tf.constant(x_max, dtype=dtype))\n", "# mixture = tfd.MixtureSameFamily(mixture_distribution=tfd.Categorical(probs=[tf.constant(0.007, dtype=dtype),\n", "# tf.constant(0.917, dtype=dtype),\n", "# tf.constant(0.076, dtype=dtype)]),\n", "# components_distribution=tfd.Uniform(low=[tf.constant(x_min, dtype=dtype), \n", "# tf.constant(3080, dtype=dtype),\n", "# tf.constant(3670, dtype=dtype)], \n", "# high=[tf.constant(x_max, dtype=dtype),\n", "# tf.constant(3112, dtype=dtype), \n", "# tf.constant(3702, dtype=dtype)]))\n", "# # for i in range(10):\n", "# # print(zfit.run(mixture.prob(mixture.sample((10, 1)))))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# print((zfit.run(jpsi_p)%(2*np.pi))/np.pi)\n", "# print((zfit.run(psi2s_p)%(2*np.pi))/np.pi)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# def jpsi_res(q):\n", "# return resonance(q, _mass = jpsi_mass, scale = jpsi_scale,\n", "# phase = jpsi_phase, width = jpsi_width)\n", "\n", "# def psi2s_res(q):\n", "# return resonance(q, _mass = psi2s_mass, scale = psi2s_scale,\n", "# phase = psi2s_phase, width = psi2s_width)\n", " \n", "# def p3770_res(q):\n", "# return resonance(q, _mass = p3770_mass, scale = p3770_scale,\n", "# phase = p3770_phase, width = p3770_width)\n", " \n", "# def p4040_res(q):\n", "# return resonance(q, _mass = p4040_mass, scale = p4040_scale,\n", "# phase = p4040_phase, width = p4040_width)\n", " \n", "# def p4160_res(q):\n", "# return resonance(q, _mass = p4160_mass, scale = p4160_scale,\n", "# phase = p4160_phase, width = p4160_width)\n", " \n", "# def p4415_res(q):\n", "# return resonance(q, _mass = p4415_mass, scale = p4415_scale,\n", "# phase = p4415_phase, width = p4415_width)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 0.15**2*4.2/1000\n", "# result.hesse()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Analysis" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# zfit.run.numeric_checks = False \n", "\n", "Ctt_list = []\n", "Ctt_error_list = []\n", "\n", "nr_of_toys = 10\n", "nevents = int(pdg[\"number_of_decays\"])\n", "nevents = pdg[\"number_of_decays\"]\n", "event_stack = 1000000\n", "# zfit.settings.set_verbosity(10)\n", "calls = int(nevents/event_stack + 1)\n", "\n", "total_samp = []\n", "\n", "start = time.time()\n", "\n", "sampler = total_f.create_sampler(n=event_stack)\n", "\n", "for toy in range(nr_of_toys):\n", " \n", " ### Generate data\n", " \n", " print(\"Toy {}: Generating data...\".format(toy))\n", " \n", " dirName = 'data/zfit_toys/toy_{0}'.format(toy)\n", " \n", " if not os.path.exists(dirName):\n", " os.mkdir(dirName)\n", " print(\"Directory \" , dirName , \" Created \")\n", "\n", " for call in range(calls):\n", "\n", " sampler.resample(n=event_stack)\n", " s = sampler.unstack_x()\n", " sam = zfit.run(s)\n", "# clear_output(wait=True)\n", "\n", " c = call + 1\n", " \n", " with open(\"data/zfit_toys/toy_{0}/{1}.pkl\".format(toy, call), \"wb\") as f:\n", " pkl.dump(sam, f, pkl.HIGHEST_PROTOCOL)\n", " \n", " print(\"Toy {}: Data generation finished\".format(toy))\n", " \n", " ### Load data\n", " \n", " print(\"Toy {}: Loading data...\".format(toy))\n", "\n", " for call in range(calls):\n", " with open(r\"data/zfit_toys/toy_0/{}.pkl\".format(call), \"rb\") as input_file:\n", " sam = pkl.load(input_file)\n", " total_samp = np.append(total_samp, sam)\n", "\n", " total_samp = total_samp.astype('float64')\n", "\n", " data = zfit.data.Data.from_numpy(array=total_samp[:int(nevents)], obs=obs)\n", " \n", " print(\"Toy {}: Loading data finished\".format(toy))\n", "\n", " ### Fit data\n", " \n", " print(\"Toy {}: Fitting pdf...\".format(toy))\n", "\n", " for param in total_f.get_dependents():\n", " param.randomize()\n", "\n", " nll = zfit.loss.UnbinnedNLL(model=total_f, data=data, fit_range = (x_min, x_max))\n", "\n", " minimizer = zfit.minimize.MinuitMinimizer(verbosity = 5)\n", " # minimizer._use_tfgrad = False\n", " result = minimizer.minimize(nll)\n", " \n", " print(\"Toy {}: Fitting finished\".format(toy))\n", "\n", " print(\"Function minimum:\", result.fmin)\n", " print(\"Hesse errors:\", result.hesse())\n", " \n", " params = result.params\n", " Ctt_list.append(params[Ctt]['value'])\n", " Ctt_error_list.append(params[Ctt]['minuit_hesse']['error'])\n", "\n", " print(\"Toy {0}/{1}\".format(toy+1, nr_of_toys))\n", " print(\"Time taken: {}\".format(display_time(int(time.time() - start))))\n", " print(\"Projected time left: {}\".format(display_time(int((time.time() - start)/(c+calls*(toy))*((nr_of_toys-toy)*calls-c)))))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print('Mean Ctt value = {}'.format(np.mean(Ctt_list)))\n", "print('Mean Ctt error = {}'.format(np.mean(Ctt_error_list)))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }