{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import os\n", "import pickle as pkl" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "scenarios = ['ff1data1']#, 'ff_3data1']\n", "\n", "# print(jobs)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scenario: ff1data1 (774 toys)\n", "Ctt mean: -0.48720672012457983\n", "Ctt error: 0.220275011013615\n", "95% sensitivity: 0.0008151541520144099\n", "95% sensitivity: 0.0010597003976187329 (CLs increase added) \n", "\n", "Scenario: ff_3data1 (782 toys)\n", "Ctt mean: -0.4443376108842471\n", "Ctt error: 0.21382619416763946\n", "95% sensitivity: 0.0007681235740452465\n", "95% sensitivity: 0.0009985606462588204 (CLs increase added) \n", "\n" ] } ], "source": [ "for scenario in scenarios:\n", " jobs = os.listdir('{}/finished'.format(scenario))\n", " Ctt = np.array([])\n", " Ctt_err = np.array([])\n", " for job in jobs:\n", " with open('{0}/finished/{1}/data/results/Ctt_list.pkl'.format(scenario, job), 'rb') as f:\n", " x = pkl.load(f)\n", " Ctt = np.append(Ctt, x)\n", "\n", " with open('{0}/finished/{1}/data/results/Ctt_error_list.pkl'.format(scenario, job), 'rb') as f:\n", " x = pkl.load(f)\n", " Ctt_err = np.append(Ctt_err, x)\n", " \n", " print('Scenario: {1} ({0} toys)'.format(len(Ctt), scenario))\n", "\n", " print(\"Ctt mean: {}\".format(np.mean(Ctt)))\n", " print('Ctt error: {}'.format(np.mean(Ctt_err)))\n", "\n", " err2 = 2*np.mean(Ctt_err)\n", "\n", " print('95% sensitivity: {}'.format(err2**2*4.2/1000))\n", " print('95% sensitivity: {} (CLs increase added) \\n'.format(err2**2*4.2/1000*1.3))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }