Newer
Older
Master_thesis / scratch / 3572424 / raremodel.py
import ROOT
#from ROOT import TTree, TFile, Double
import numpy as np
from pdg_const import pdg
import matplotlib
matplotlib.use("Qt5Agg")
import matplotlib.pyplot as plt
import pickle as pkl
import sys
import time
from helperfunctions import display_time
import cmath as c

mmu = pdg['muon_M']
mb = pdg["bquark_M"]
ms = pdg["squark_M"]
mK = pdg["Ks_M"]
mB = pdg["Bplus_M"]

class model:
    
    def __init__(self):
    

        self.mmu = pdg['muon_M']
        self.mb = pdg["bquark_M"]
        self.ms = pdg["squark_M"]
        self.mK = pdg["Ks_M"]
        self.mB = pdg["Bplus_M"]

        self.C7eff = pdg["C7eff"]
        self.C9eff = pdg["C9eff"]
        self.C10eff = pdg["C10eff"]
        
        #self.C1 = pdg["C1"]
        #self.C2 = pdg["C2"]
        #self.C3 = pdg["C3"]
        #self.C4 = pdg["C4"]
        
        self.GF = pdg["GF"] #Fermi coupling const.
        self.alpha_ew = pdg["alpha_ew"]
        self.Vts = pdg["Vts"]
        self.Vtb = pdg["Vtb"]
        
        self.x_min = 2*self.mmu
        self.x_max = (self.mB - self.mK) - 0.1
        self.total_pdf_string = "self.total_nonres(q2)"
        self.mode = ""
        self.total_scale_amp = 1.0
        self._mean = 0.0
        
        self.cusp_mean = 1
        self.cusp_sigma_L = 1
        self.cusp_sigma_R = 1
        self.cusp_amp = 0
        

    def formfactor(self, q2, subscript):
        
        #check if subscript is viable
        
        if subscript != "0" and subscript != "+" and subscript != "T":
            raise ValueError('Wrong subscript entered, choose either 0, + or T')
        
        #get constants
        
        mh = self.mK
        mbstar0 = pdg["mbstar0"]
        mbstar = pdg["mbstar"]
        b0 = pdg["b0"]
        bplus = pdg["bplus"]
        bT = pdg["bT"]
        
        N = 3
        
        #some helperfunctions
        
        tpos = (self.mB - self.mK)**2
        tzero = (self.mB + self.mK)*(np.sqrt(self.mB)-np.sqrt(self.mK))**2
        
        z_oben = np.sqrt(tpos - q2) - np.sqrt(tpos - tzero)
        z_unten = np.sqrt(tpos - q2) + np.sqrt(tpos - tzero)
        z = z_oben/z_unten
        
        #calculate f0
        
        if subscript == "0":
            prefactor = 1/(1 - q2/(mbstar0**2))
            _sum = 0
            
            for i in range(N):
                _sum += b0[i]*(z**i)
                
            return prefactor * _sum
        
        #calculate f+ or fT
        
        else:
            prefactor = 1/(1 - q2/(mbstar**2))
            _sum = 0
            
            if subscript == "T":
                b = bT
            else:
                b = bplus
        
            for i in range(N):
                _sum += b[i] * (z**i - ((-1)**(i-N)) * (i/N) * z**N)
            
            return prefactor * _sum
    
    def axiv_nonres(self, q2):
        
        GF = self.GF
        alpha_ew = self.alpha_ew
        Vtb = self.Vtb
        Vts = self.Vts
        C10eff = self.C10eff
        
        mmu = self.mmu
        mb = self.mb
        ms = self.ms
        mK = self.mK
        mB = self.mB        
    
        #Some helperfunctions
        
        beta = np.sqrt(abs(1. - 4. * self.mmu**2. / q2))
        
        kabs = np.sqrt(mB**2 + q2**2/mB**2 + mK**4/mB**2 - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2)
        
        #prefactor in front of whole bracket
        
        prefactor1 = GF**2. *alpha_ew**2. * (abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.)
        
        #left term in bracket
        
        bracket_left = 2./3. * kabs**2 * beta**2 * abs(C10eff*self.formfactor(q2, "+"))**2      
        
        #middle term in bracket
        
        _top = 4. * mmu**2 * (mB**2 - mK**2) * (mB**2 - mK**2)
        
        _under = q2 * mB**2
        
        bracket_middle = _top/_under * abs(C10eff * self.formfactor(q2, "0"))**2
        
        return prefactor1 * (bracket_left + bracket_middle) * 2 * np.sqrt(q2)
        

    def vec_nonres(self, q2):
        
        GF = self.GF
        alpha_ew = self.alpha_ew
        Vtb = self.Vtb
        Vts = self.Vts
        C7eff = self.C7eff
        C9eff = self.C9eff
        
        mmu = self.mmu
        mb = self.mb
        ms = self.ms
        mK = self.mK
        mB = self.mB        
    
        #Some helperfunctions
        
        beta = np.sqrt(abs(1. - 4. * self.mmu**2. / q2))
        
        kabs = np.sqrt(mB**2 + q2**2/mB**2 + mK**4/mB**2 - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2)
        
        #prefactor in front of whole bracket
        
        prefactor1 = GF**2. *alpha_ew**2. * (abs(Vtb*Vts))**2 * kabs * beta / (128. * np.pi**5.) 
        
        #right term in bracket
        
        prefactor2 = kabs**2 * (1. - 1./3. * beta**2)
        
        abs_bracket = abs(C9eff * self.formfactor(q2, "+") + 2 * C7eff * (mb + ms)/(mB + mK) * self.formfactor(q2, "T"))**2
                
        bracket_right = prefactor2 * abs_bracket
        
        return prefactor1 * bracket_right * 2 * np.sqrt(q2)
    
    def total_nonres(self, q2):
        
        #Get constants
        
        GF = self.GF
        alpha_ew = self.alpha_ew
        Vtb = self.Vtb
        Vts = self.Vts
        C10eff = self.C10eff
        C9eff = self.C9eff
        C7eff = self.C7eff
        
        mmu = self.mmu
        mb = self.mb
        ms = self.ms
        mK = self.mK
        mB = self.mB
        
        #vector nonresonant part
        
        vec_nonres_part = self.vec_nonres(q2)
        
        #axial verctor nonresonant part including C7
        
        axiv_nonres_part = self.axiv_nonres(q2)
        
        #Complete term
        
        return self.total_scale_amp*complex(vec_nonres_part + axiv_nonres_part, 0.0)

    def generate_points(self, set_size = 10000, x_min = 2* mmu, x_max = (mB - mK) - 0.1, save = True, verbose = 1, mode = "slim_points", resolution = 7.0, min_bin_scaling = 100):
        
        #Setup contants and variables
        
        if mode != "slim_points" and mode != "full_points" and mode != "fast_binned":
            raise ValueError('Wrong mode entered, choose either slim_points, full_points or fast_binned')
        
        self.mode = mode
        
        mB = self.mB
        mK = self.mK
        mmu = self.mmu
        
        #Range of function in MeV
        
        dq = np.linspace(x_min, x_max ,5000)
        
        x1 = 2500
        y1 = self.total_pdf(x1**2)
        
        x2 = 4000
        y2 = self.total_pdf(x2**2)
        
        #Translate to MeV**2
        
        dgamma_tot = []

        for i in dq:
            dgamma_tot.append(self.total_pdf(i**2))
        
        dq2 = []

        for i in dq:
                dq2.append(i**2)
        
        #Generate random points
        
        psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"]
        
        _max = max(dgamma_tot)
        
        A1_x1 = (_max-y1)*x1
        A23_x1 = y1*x1
        
        A1_x2 = (_max-y2)*x2
        A23_x2 = y2*x2
        
        if mode == "slim_points":
            
            x_part = []
            y_part = []

            print("Generating set of size {}...".format(int(set_size)))

            #print(len(y))

            #ROOT.TRandom1().SetSeed(0)
            
            if verbose != 0:
                verbose_calls = []
                j = 0
                o = 0
                while j < 100:
                    j += verbose
                    verbose_calls.append(int(set_size*j/100))
            
            start = time.time()
            counter = 0
            counter_x = 0
            while len(x_part) < set_size:
                counter += 1
                x = ROOT.TRandom1().Uniform(x_min, x_max)
                y = ROOT.TRandom1().Uniform(0, _max)
                
                if y < self.total_pdf(x**2):
                    x_part.append(x)
                    counter_x += 1
                    
                #progress calls
                if verbose != 0:
                    end = time.time()
                    if o*verbose+verbose < 100 and counter%300 == 0:
                        print(" {0}{1} completed".format(o*verbose+verbose, "%"))
                        print(" Projected time left: {0}".format(display_time(int((end-start)*set_size/(len(x_part)+1)-(end-start)))))
                        sys.stdout.write("\033[F")
                        sys.stdout.write("\x1b[2K")
                        sys.stdout.write("\033[F")
                        sys.stdout.write("\x1b[2K")
                    if o*verbose + verbose >=100:
                        sys.stdout.write("\033[F")
                        sys.stdout.write("\x1b[2K")
                        print(" Time to generate set: {0}".format(display_time(int(end-start))))
                        
                    if len(x_part) == verbose_calls[o]:
                        o += 1
                        
                                    
            print(" {0} out of {1} particles chosen!".format(int(counter_x), counter))
                        
            print(" Set generated!")
            
            #Save the set
            
            if save:

                part_set = {"x_part" : x_part, "y_part": y_part, "counter_tot": counter, "counter_x": counter_x}
                            
                pkl.dump( part_set, open("./data/set_{0}_range({1}-{2}).pkl".format(int(set_size),int(x_min), int(x_max)) , "wb" ) )

                print(" Set saved!")
            
            print
            
            #returns all the chosen points (x_part, y_part) and all the random points generated (x, y)
            
            return x_part, y_part, counter
        
        if mode == "full_points":
            
            x = []
            y = []

            x_part = []
            y_part = []

            print("Generating set of size {}...".format(int(set_size)))

            #print(len(y))

            #ROOT.TRandom1().SetSeed(0)
            
            if verbose != 0:
                verbose_calls = []
                j = 0
                o = 0
                while j < 100:
                    j += verbose
                    verbose_calls.append(int(set_size*j/100))
            
            start = time.time()
            
            counter = 0
            counter_x = 0
            while len(x_part) < set_size:
                counter += 1
                x.append(ROOT.TRandom1().Uniform(x_min, x_max))
                y.append(ROOT.TRandom1().Uniform(0, _max))
                
                if y[-1] < self.total_pdf(x[-1]**2):
                    x_part.append(x)
                    y_part.append(y)
                    counter_x += 1
                    
                #progress calls
                if verbose != 0:
                    end = time.time()
                    if o*verbose+verbose < 100 and counter%300 == 0:
                        print(" {0}{1} completed".format(o*verbose+verbose, "%"))
                        print(" Projected time left: {0}".format(display_time(int((end-start)*set_size/(len(x_part)+1)-(end-start)))))
                        sys.stdout.write("\033[F")
                        sys.stdout.write("\x1b[2K")
                        sys.stdout.write("\033[F")
                        sys.stdout.write("\x1b[2K")
                    if o*verbose + verbose >=100:
                        sys.stdout.write("\033[F")
                        sys.stdout.write("\x1b[2K")
                        print(" Time to generate set: {0}".format(display_time(int(end-start))))
                        
                    if len(x_part) == verbose_calls[o]:
                        o += 1
                        
                        
                                    
            print(" {0} out of {1} particles chosen!".format(len(x_part), counter))
                        
            print(" Set generated!")
            
            #Save the set
            
            if save:

                part_set = {"x_part" : x_part, "y_part": y_part, "counter": counter}
                
                raw_set = {"x" : x, "y": y, "counter": counter}
                            
                pkl.dump( part_set, open("./data/set_{0}.pkl".format(int(set_size)) , "wb" ) )
                
                pkl.dump( part_set, open("./data/set_raw_{0}.pkl".format(int(set_size)) , "wb" ) )

                print(" Sets saved!")
            
            print
            
            #returns all the chosen points (x_part, y_part) and all the random points generated (x, y)
            
            return x_part, y_part, counter
        
        
        if mode == "fast_binned":

            nbins = int((x_max-x_min)/resolution)
            
            print("Generating set with {} bins...".format(nbins))
            
            dq = np.linspace(x_min, x_max ,nbins+1)
            
            bin_mean = []
            bin_true_height = []
            
            for i in range(len(dq)-1):
                a = dq[i]
                b = dq[i+1]
                c = (a+b)/2
                bin_mean.append(c)
                
                height = self.total_pdf(c**2)
                bin_true_height.append(height)
            
            _min = min(bin_true_height)
            
            for i in range(len(bin_true_height)):
                bin_true_height[i] = bin_true_height[i]/_min*min_bin_scaling
            
            start = time.time()
            
            bin_height = []
            
            for i in range(len(bin_mean)):
                bin_height.append(int(ROOT.TRandom1().Gaus(bin_true_height[i], np.sqrt(bin_true_height[i]))))
                #print(int(ROOT.TRandom1().Gaus(bin_true_height[i], np.sqrt(bin_true_height[i]))))
                    
                #progress calls
            if verbose != 0:
                end = time.time()
                print(" Time to generate set: {0}s".format(end-start))
                            
            print(" {0} bins simulated".format(nbins))
                        
            print(" Set generated!")
            
            #Save the set
            
            if save:
                
                _ = 0
                
                for i in bin_height:
                    _ += i

                part_set = {"bin_mean" : bin_mean, "bin_height": bin_height, "nbins": nbins}
                            
                pkl.dump( part_set, open("./data/binned_set_{0}bins_{1}part.pkl".format(nbins, _) , "wb" ) )

                print(" Set saved!")
            
            print
            
            return bin_mean, bin_height, nbins
            
            
            
    
    def draw_plots(self, part_set, counter, mode,min_bin_scaling = 100, x_min = 2* mmu, x_max = (mB - mK) - 0.1, resolution = 7):
        
        if mode != "slim_points" and mode != "full_points" and mode != "fast_binned":
            raise ValueError('Wrong mode entered, choose either slim_points, full_points or fast_binned')
        if mode != self.mode:
            raise ValueError('self.mode and mode are different, set them to the same value')
        #Resolution based on experiment chosen to be ~7MeV
        
        #Setup contants and variables
        
        print("Generating plots")
        
        if mode == "fast_binned":
            
            mB = self.mB
            mK = self.mK
            mmu = self.mmu
            
            #Range of function in MeV
            
            dq = np.linspace(x_min, x_max ,5000)
            
            #Translate to MeV**2
            
            dq2 = []

            for i in dq:
                    dq2.append(i**2)

            #calculate formfactors
            
            ff_plus = []
            ff_T = []
            ff_0 = []

            for i in dq:
                ff_0.append(self.formfactor(i**2, "0"))
                ff_T.append(self.formfactor(i**2, "T"))
                ff_plus.append(self.formfactor(i**2, "+"))
            
            #calculate nonresonant
            
            dgamma_axiv_nonres = []
            dgamma_vec_nonres = []
            dgamma_tot = []

            for i in dq:	
                    dgamma_axiv_nonres.append(self.axiv_nonres(i**2))
                    dgamma_vec_nonres.append(self.vec_nonres(i**2))
                    dgamma_tot.append(self.total_pdf(i**2))
                    
            
            #Plot formfactors
            
            plt.plot(dq2, ff_0, label = "0")
            plt.plot(dq2, ff_T, label = "T")
            plt.plot(dq2, ff_plus, label = "+")

            plt.grid()
            
            plt.title("Formfactors")
            
            plt.legend()

            plt.savefig("./plots/fast_binned/ff.png")

            print(" ff.png created")
            
            plt.clf()
            
            
            #Plot nonresonant part
            
            plt.plot(dq, dgamma_axiv_nonres, label = "axiv")
            plt.plot(dq, dgamma_vec_nonres, label = "vec")

            plt.grid()
            
            plt.title("Nonresonant axial vector and vector parts")
            
            plt.legend()

            plt.savefig("./plots/fast_binned/vec_axiv.png")
            
            print(" vec_axiv.png created")

            plt.clf()

            plt.plot(dq, dgamma_tot, label = "total")

            plt.grid()
            
            plt.title("Total pdf")

            plt.legend()

            plt.savefig("./plots/fast_binned/tot.png")
            
            print(" tot.png created")
            
            #All pdfs

            #print(test_x[1]**2 - self.x_min**2)

            tot_y = []
            jpsi_y = []
            psi2s_y = []
            total_nonres_y = []
            cusp_y = []

                    
            jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg["jpsi"]

            psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"]

            for i in range(len(dq)):
                #print(i**2 - 4*(mmu**2))
                tot_y.append(abs(self.total_pdf(dq[i]**2)))
                jpsi_y.append(abs(self.resonance(dq[i]**2, jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale)))
                psi2s_y.append(abs(self.resonance(dq[i]**2, psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale)))
                total_nonres_y.append(abs(self.total_nonres(dq[i]**2)))
                cusp_y.append(abs(self.bifur_gauss(dq[i]**2, self.cusp_mean, self.cusp_amp, self.cusp_sigma_L, self.cusp_sigma_R )))
                #resonance(self, q2, _mass, width, phase, scale):
                #w[i] = np.sqrt(w[i])
                #print(test_y[i])
                            
            plt.clf()
            
            plt.title("All pdfs")
            
            #plt.yscale("log")

            plt.ylim(0, 1e-5)

            plt.grid()

            plt.plot(dq, tot_y, label = "total pdf")
            plt.plot(dq, jpsi_y, label = "jpsi")
            plt.plot(dq, psi2s_y, label = "psi2s")
            plt.plot(dq, total_nonres_y, label = "nonres")
            plt.plot(dq, cusp_y, label = "cusp")

            plt.legend()

            plt.savefig("./plots/fast_binned/pdf_and_parts.png")
            
            print(" pdf_and_parts.png created")
            
            #Create histo with pdf

            #Translate to MeV**2
            
            plt.clf()

            dq2 = []

            for i in dq:
                    dq2.append(i**2)
                    
            dgamma_tot = []

            for i in dq2:
                dgamma_tot.append(self.total_pdf(i))

            _min = min(dgamma_tot)

            for i in range(len(dgamma_tot)):
                dgamma_tot[i] = dgamma_tot[i]/_min*min_bin_scaling
                
            bin_mean, bin_height = part_set

            nbins = counter
                
            plt.hist(bin_mean, bins=nbins, range=(self.x_min, self.x_max), weights = bin_height, label = "toy data binned")

            plt.plot(dq, dgamma_tot, label = "pdf")

            _sum = 0

            for i in bin_height:
                _sum += i

            #print(_max)

            plt.grid()

            plt.ylim(0, 2000)

            plt.legend()

            plt.title("{0} random points generated according to pdf ({1} particles)".format(len(bin_mean), _sum))

            plt.savefig("./plots/fast_binned/histo.png")

            print(" histo.png created")
            
            print(" All plots drawn \n")
            
            return
        
        else:
            
            mB = self.mB
            mK = self.mK
            mmu = self.mmu
            
            #Range of function in MeV
            
            dq = np.linspace(x_min, x_max ,5000)
            
            #Translate to MeV**2
            
            dq2 = []

            for i in dq:
                    dq2.append(i**2)

            #calculate formfactors
            
            ff_plus = []
            ff_T = []
            ff_0 = []

            for i in dq:
                ff_0.append(self.formfactor(i**2, "0"))
                ff_T.append(self.formfactor(i**2, "T"))
                ff_plus.append(self.formfactor(i**2, "+"))
            
            #calculate nonresonant
            
            dgamma_axiv_nonres = []
            dgamma_vec_nonres = []
            dgamma_tot = []

            for i in dq:	
                    dgamma_axiv_nonres.append(self.axiv_nonres(i**2))
                    dgamma_vec_nonres.append(self.vec_nonres(i**2))
                    dgamma_tot.append(self.total_pdf(i**2))
                    
            
            #Plot formfactors
            
            plt.plot(dq2, ff_0, label = "0")
            plt.plot(dq2, ff_T, label = "T")
            plt.plot(dq2, ff_plus, label = "+")

            plt.grid()
            
            plt.title("Formfactors")
            
            plt.legend()

            plt.savefig("./plots/points/ff.png")

            print(" ff.png created")
            
            plt.clf()
            
            
            #Plot nonresonant part
            
            plt.plot(dq, dgamma_axiv_nonres, label = "axiv")
            plt.plot(dq, dgamma_vec_nonres, label = "vec")

            plt.grid()
            
            plt.title("Nonresonant axial vector and vector parts")
            
            plt.legend()

            plt.savefig("./plots/points/vec_axiv.png")
            
            print(" vec_axiv.png created")

            plt.clf()

            plt.plot(dq, dgamma_tot, label = "total")

            plt.grid()
            
            plt.title("Total pdf")

            plt.legend()

            plt.savefig("./plots/points/tot.png")
            
            print(" tot.png created")
            
            
            #Particle set
            
            x_part, y_part = part_set
            
            set_size = len(x_part)
            
            #Plot generated generate_points
            
            #plt.clf()

            #plt.plot(x_part, y_part, label = "Random points generated", marker = ".", linewidth = 0)

            #plt.plot(dq, dgamma_tot, label = "pdf")

            #plt.grid()
            
            #plt.title("Random points generated and pdf")

            #plt.legend()

            #plt.savefig("./plots/points/points_raw.png")
            
            #print(" points_raw.png created")
            
            #Histo unnormalized
            
            bins = int((x_max-x_min)/resolution)
            
            plt.clf()
            
            wheights = np.ones_like(x_part)
            
            _max = max(dgamma_tot)
            
            x1 = 2500
            y1 = self.total_pdf(x1**2)
            x2 = 4000
            y2 = self.total_pdf(x2**2)
            
            for i in range(len(wheights)):
                if x_part[i] < x1:
                    wheights[i] = x1*y1/(x1*_max)
                elif x_part[i] > x2:
                    wheights[i] = x2*y2/(x2*_max)
                    
            _y, _x, _ = plt.hist(x_part, bins=bins, weights = wheights, range=(x_min, x_max), label = "toy data binned ({0} points)".format(sum(wheights)))

            _mean_histo = float(np.mean(_y))
            
            plt.legend()
            
            plt.title("Binned toy data")
            
            plt.savefig("./plots/points/histo_raw.png")
            
            print(" histo_raw.png created")
            
            
            #Histo and pdf normailzed
            
            plt.clf()

            for i in range(len(dgamma_tot)):
                dgamma_tot[i] = dgamma_tot[i]/(float(set_size)*_max * 2.0 * mmu / counter)

            _mean = np.mean(dgamma_tot)

            #Attempt for marked field of std-dev
            
            #dgamma_min = []
            #dgamma_plu = []
            #for i in range(len(dgamma_tot)):
                #dgamma_min.append(dgamma_tot[i]-np.sqrt(dgamma_tot[i]))
                #dgamma_plu.append(dgamma_tot[i]+np.sqrt(dgamma_tot[i]))
            
            #plt.plot(dq, dgamma_min, alpha = 0.5)

            #plt.plot(dq, dgamma_plu, alpha = 0.5)

            #plt.fill_between(dq, dgamma_min, dgamma_plu)
            
            #Plot histo        

            plt.hist(x_part, bins=bins, range=(x_min, x_max), weights = wheights/(_mean_histo/_mean), label = "toy data binned")

            plt.plot(dq, dgamma_tot, label = "pdf")

            #print(_max)

            plt.grid()

            plt.legend()
            
            plt.ylim(0, 1e-5)
            
            plt.title("{0} random points generated according to pdf".format(sum(wheights)))

            plt.savefig("./plots/points/histo.png")
            
            print(" histo.png created")
            
            #All pdfs

            #print(test_x[1]**2 - self.x_min**2)

            tot_y = []
            jpsi_y = []
            psi2s_y = []
            total_nonres_y = []
            cusp_y = []

                    
            jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale = pdg["jpsi"]

            psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale = pdg["psi2s"]

            for i in range(len(dq)):
                #print(i**2 - 4*(mmu**2))
                tot_y.append(abs(self.total_pdf(dq[i]**2)))
                jpsi_y.append(abs(self.resonance(dq[i]**2, jpsi_mass, jpsi_width, jpsi_phase, jpsi_scale)))
                psi2s_y.append(abs(self.resonance(dq[i]**2, psi2s_mass, psi2s_width, psi2s_phase, psi2s_scale)))
                total_nonres_y.append(abs(self.total_nonres(dq[i]**2)))
                cusp_y.append(abs(self.bifur_gauss(dq[i]**2, self.cusp_mean, self.cusp_amp, self.cusp_sigma_L, self.cusp_sigma_R )))
                #resonance(self, q2, _mass, width, phase, scale):
                #w[i] = np.sqrt(w[i])
                #print(test_y[i])
                            
            plt.clf()
            
            plt.title("All pdfs")
            
            #plt.yscale("log")

            plt.ylim(0, 2*self._mean)

            plt.grid()

            plt.plot(dq, tot_y, label = "total pdf")
            plt.plot(dq, jpsi_y, label = "jpsi")
            plt.plot(dq, psi2s_y, label = "psi2s")
            plt.plot(dq, total_nonres_y, label = "nonres")
            plt.plot(dq, cusp_y, label = "cusp")

            plt.legend()

            plt.savefig("./plots/points/pdf_and_parts.png")
            
            print(" pdf_and_parts.png created")
            
            print(" All plots drawn \n")
            
            return
        
    
    def total_pdf(self, q2):
        
        #Calculate the pdf with the added resonances
        
        exec("_sum = abs({0})".format(self.total_pdf_string))
            
        return _sum
    
    
    def resonance(self, q2, _mass, width, phase, scale): #returns [real, imaginary]
        
        #calculate the resonance ---------------------------------------------> Formula correct?
        
        #if abs(np.sqrt(q2) - _mass) < 300:
            #return 0., 0.
        
        np.sqrt(mB**2 + q2**2/mB**2 + mK**4/mB**2 - 2 * (mB**2 * mK**2 + mK**2 * q2 + mB**2 * q2) / mB**2)
        
        #print(q2)
        
        #Teiler erweitert mit kompl. konj.
        
        #p = 0.5 * np.sqrt(q2 - 4*(mmu**2))
        
        #p0 =  0.5 * np.sqrt(_mass**2 - 4*mmu**2)
        
        #gamma_j = p / p0 * _mass /q2 * width
        
        #_top_im = - _mass**2 * width * gamma_j
        
        #_top_re = _mass * width * (_mass**2 - q2)
        
        #_bottom = (_mass**2 - q2)**2 + _mass**2 * gamma_j**2
        
        #real = _top_re/_bottom
        
        #imaginary = _top_im/_bottom
        
        #com = complex(real, imaginary) * scale
        
        #r = abs(com)

        #_phase = c.phase(com)

        #_phase += phase

        #x = c.cos(phase)*r
        #y = c.sin(phase)*r

        #com = complex(x,y)
        
        
        #Original formula
        
        p = 0.5 * np.sqrt(q2 - 4*(mmu**2))
        
        p0 =  0.5 * np.sqrt(_mass**2 - 4*mmu**2)
        
        gamma_j = p / p0 * _mass /q2 * width
        
        _top = complex(_mass * width, 0.0)
        
        _bottom = complex((_mass**2 - q2), -_mass*gamma_j)
        
        com = _top/_bottom * scale
        
        r = abs(com)

        _phase = c.phase(com)

        _phase += phase

        x = c.cos(phase)*r
        y = c.sin(phase)*r

        com = complex(x,y)
        
        return self.total_scale_amp*com
    
        
    def add_resonance(self, _mass, width, phase, scale):
        
        #Adds the resonace to the pdf in form of a string (to be executed later)
        
        self.total_pdf_string += "+ self.resonance(q2,{0},{1},{2},{3})".format(_mass, width, phase, scale)
        
    def bifur_gauss(self, q2, mean, amp, sigma_L, sigma_R):
    
        q = np.sqrt(q2)
        
        if q < mean:
            sigma = sigma_L
        else:
            sigma = sigma_R
            
        _exp = np.exp(- (q-mean)**2 / (2 * sigma**2))
            
        dgamma = amp*_exp/(np.sqrt(2*np.pi))*2*(sigma_L*sigma_R)/(sigma_L+sigma_R)
        
        com = complex(dgamma, 0)
        
        return self.total_scale_amp*com
    
    def add_cusp(self, mean, amp, sigma_L, sigma_R):
        
        self.total_pdf_string += "+ self.bifur_gauss(q2,{0},{1},{2},{3})".format(mean, amp, sigma_L, sigma_R)
        
        self.cusp_mean = mean
        self.cusp_sigma_L = sigma_L
        self.cusp_sigma_R = sigma_R
        self.cusp_amp = amp
        
    
    def normalize_pdf(self):
        x_scan = np.linspace(self.x_min, self.x_max, 10000)
        
        y_scan = []
        
        for i in x_scan:
            y_scan.append(self.total_pdf(i**2))
        
        _mean = np.mean(y_scan)
        
        self.total_scale_amp = 1.0/(self.x_max-self.x_min)*_mean
        
        self._mean = _mean * self.total_scale_amp